Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288563

RESUMEN

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite , Animales , Teorema de Bayes , Repeticiones de Microsatélite/genética , Reproducción/genética , Polinización/genética , Flujo Génico , Variación Genética/genética
2.
Proc Natl Acad Sci U S A ; 120(44): e2302440120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871198

RESUMEN

Seed dispersal by frugivores is a fundamental function for plant community dynamics in fragmented landscapes, where forest remnants are typically embedded in a matrix of anthropogenic habitats. Frugivores can mediate both connectivity among forest remnants and plant colonization of the matrix. However, it remains poorly understood how frugivore communities change from forest to matrix due to the loss or replacement of species with traits that are less advantageous in open habitats and whether such changes ultimately influence the composition and traits of dispersed plants via species interactions. Here, we close this gap by using a unique dataset of seed-dispersal networks that were sampled in forest patches and adjacent matrix habitats of seven fragmented landscapes across Europe. We found a similar diversity of frugivores, plants, and interactions contributing to seed dispersal in forest and matrix, but a high turnover (replacement) in all these components. The turnover of dispersed seeds was smaller than that of frugivore communities because different frugivore species provided complementary seed dispersal in forest and matrix. Importantly, the turnover involved functional changes toward larger and more mobile frugivores in the matrix, which dispersed taller, larger-seeded plants with later fruiting periods. Our study provides a trait-based understanding of frugivore-mediated seed dispersal through fragmented landscapes, uncovering nonrandom shifts that can have cascading consequences for the composition of regenerating plant communities. Our findings also highlight the importance of forest remnants and frugivore faunas for ecosystem resilience, demonstrating a high potential for passive forest restoration of unmanaged lands in the matrix.


Asunto(s)
Ecosistema , Dispersión de Semillas , Bosques , Semillas , Frutas , Árboles
3.
Ann Bot ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400416

RESUMEN

BACKGROUND AND AIMS: Despite chromosomal evolution being one of the major drivers of diversification in plants, we do not yet have a clear view of how new chromosome rearrangements become fixed within populations, which is a crucial step forward for understanding chromosomal speciation. METHODS: In this study, we test the role of genetic drift in the establishment of new chromosomal variants in the context of hybrid dysfunction models of chromosomal speciation. We genotyped a total of 178 individuals from seven populations (plus 25 seeds from one population) across the geographic range of Carex helodes (Cyperaceae). We also characterized karyotype geographic patterns of the species across the distribution range. For one of the populations, we performed a detailed study of the fine scale, local spatial distribution of its individuals and their genotypes and karyotypes. KEY RESULTS: Synergistically, phylogeographic and karyotypic evidence show two main genetic groups: southwestern Iberian Peninsula vs. northwestern African populations, and within Europe our results suggest a west-to-east expansion with signals of genetic bottlenecks. Additionally, we have inferred a pattern of descending dysploidy, plausibly as a result of a west-to-east process of post-glacial colonization in Europe. CONCLUSIONS: Our results give experimental support to the role of geographic isolation, drift, and inbreeding in the establishment of new karyotypes which is key in the speciation models of hybrid dysfunction.

4.
Nature ; 619(7971): 788-792, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468625

RESUMEN

Ecological interactions are one of the main forces that sustain Earth's biodiversity. A major challenge for studies of ecology and evolution is to determine how these interactions affect the fitness of species when we expand from studying isolated, pairwise interactions to include networks of interacting species1-4. In networks, chains of effects caused by a range of species have an indirect effect on other species they do not interact with directly, potentially affecting the fitness outcomes of a variety of ecological interactions (such as mutualism)5-7. Here we apply analytical techniques and numerical simulations to 186 empirical mutualistic networks and show how both direct and indirect effects alter the fitness of species coevolving in these networks. Although the fitness of species usually increased with the number of mutualistic partners, most of the fitness variation across species was driven by indirect effects. We found that these indirect effects prevent coevolving species from adapting to their mutualistic partners and to other sources of selection pressure in the environment, thereby decreasing their fitness. Such decreases are distributed in a predictable way within networks: peripheral species receive more indirect effects and experience higher reductions in fitness than central species. This topological effect was also evident when we analysed an empirical study of an invasion of pollination networks by honeybees. As honeybees became integrated as a central species within networks, they increased the contribution of indirect effects on several other species, reducing their fitness. Our study shows how and why indirect effects can govern the adaptive landscape of species-rich mutualistic assemblages.


Asunto(s)
Biodiversidad , Evolución Biológica , Aptitud Genética , Simbiosis , Animales , Polinización , Simbiosis/fisiología , Abejas/fisiología
5.
Proc Biol Sci ; 290(1999): 20222547, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37221844

RESUMEN

Plant-animal mutualisms such as seed dispersal are key interactions for sustaining plant range shifts. It remains elusive whether the organization of interactions with seed dispersers is reconfigured along the expansion landscape template and, if so, whether its effects accelerate or slow colonization. Here we analyse plant-frugivore interactions in a scenario of rapid population expansion of a Mediterranean juniper. We combined network analyses with field surveys, sampling interactions between individual plants and frugivores by DNA-barcoding and phototrapping over two seasons. We assess the role of intrinsic and extrinsic intraspecific variability in shaping interactions and we estimate the individual plant contributions to the seed rain. The whole interaction network was highly structured, with a distinct set of modules including individual plants and frugivore species arranged concordantly along the expansion gradient. The modular configuration was partially shaped by individual neighbourhood context (density and fecundity) and phenotypic traits (cone size). Interaction reconfiguration resulted in a higher and more uneven propagule contribution, with most effective dispersers having a prominent role at the colonization front stand, where a distinct subset of early arriving plants dominated the seed rain. Our study offers new insights into the key role of mutualistic interactions in colonization scenarios by promoting fast plant expansion processes.


Asunto(s)
Fertilidad , Semillas , Animales , Fenotipo , Proyectos de Investigación
6.
Ecol Lett ; 26(3): 448-459, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36688287

RESUMEN

Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant-pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant-pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.


Asunto(s)
Plantas , Polinización , Humanos , Estudios de Factibilidad , Simbiosis , Fenotipo , Flores
7.
Ecol Lett ; 26(1): 132-146, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36450595

RESUMEN

Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.


Asunto(s)
Conducta Alimentaria , Dispersión de Semillas , Animales , Simbiosis , Aves , Frutas , Árboles
8.
Nat Commun ; 13(1): 6943, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376314

RESUMEN

Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world's biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.


Asunto(s)
Aves , Ecosistema , Animales , Humanos , Biodiversidad , Plantas
9.
Ecol Lett ; 25(2): 264-277, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971487

RESUMEN

Mutualism effectiveness, the contribution of an interacting organism to its partner's fitness, is defined as the number of immediate outcomes of the interactions (quantity component) multiplied by the probability that an immediate outcome results in a new individual (quality component). These components form a two-dimensional effectiveness landscape with each species' location determined by its values of quantity (x-axis) and quality (y-axis). We propose that the evolutionary history of mutualistic interactions leaves a footprint that can be identified by three properties of the spatial structure of effectiveness values: dispersion of effectiveness values, relative contribution of each component to the effectiveness values and correlation between effectiveness components. We illustrate this approach using a large dataset on synzoochory, seed dispersal by seed-caching animals. The synzoochory landscape was clumped, with effectiveness determined primarily by the quality component, and with quantity and quality positively correlated. We suggest this type of landscape structure is common in generalised coevolved mutualisms, where multiple functionally equivalent, high-quality partners exert similarly strong selection. Presumably, only those organisms located in high-quality regions will impact the evolution of their partner. Exploring properties of effectiveness landscapes in other mutualisms will provide new insight into the evolutionary and ecological consequences of mutualisms.


Asunto(s)
Simbiosis , Animales
10.
Ecol Lett ; 25(2): 320-329, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34775664

RESUMEN

Seed dispersal benefits plants and frugivores, and potentially drives co-evolution, with consequences to diversification evidenced for, e.g., primates. Evidence for macro-coevolutionary patterns in multi-specific, plant-animal mutualisms is scarce, and the mechanisms driving them remain unexplored. We tested for phylogenetic congruences in primate-plant interactions and showed strong co-phylogenetic signals across Neotropical forests, suggesting that both primates and plants share evolutionary history. Phylogenetic congruence between Platyrrhini and Angiosperms was driven by the most generalist primates, modulated by their functional traits, interacting with a wide-range of Angiosperms. Consistently similar eco-evolutionary dynamics seem to be operating irrespective of local assemblages, since co-phylogenetic signal emerged independently across three Neotropical regions. Our analysis supports the idea that macroevolutionary, coevolved patterns among interacting mutualistic partners are driven by super-generalist taxa. Trait convergence among multiple partners within multi-specific assemblages appears as a mechanism favouring these likely coevolved outcomes.


Asunto(s)
Primates , Dispersión de Semillas , Animales , Bosques , Filogenia , Plantas/genética , Simbiosis
11.
Ecol Evol ; 11(22): 15520-15533, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824772

RESUMEN

The partition of the ecological niche can enhance the coexistence of predators due to differences in how they exploit three main resources: food, space, and time, the latter being an axis that often remains unexplored.We studied niche segregation in a Mediterranean mesocarnivore community composed by Vulpes vulpes, Genetta genetta, Meles meles, and Herpestes ichneumon, addressing simultaneously different niche axes: the temporal, trophic, and spatial axes.We assessed temporal segregation between mesopredators and prey and between potential competitors, using camera trap data between 2018 and 2020 in a Mediterranean landscape in Southern Spain. We deployed camera traps in 35 stations in three sites with varying vegetation cover within Doñana National Park. We further examined the spatial overlap in activity centers and trophic preferences between potential competitors using diet information from studies performed in the study area.We found an overall temporal segregation between trophic generalist species, with species showing higher temporal overlap differing in their trophic preferences and/or showing limited spatial overlap. Furthermore, we observed an overall high overlap between the activity patterns of predators and their major prey in the area (the common genet vs. small mammals and the red fox vs. European rabbit).Our study suggests that coexistence of the different species that compose the mesocarnivore assemblage in Mediterranean landscapes can be facilitated by subtle differences along the three main niche axes, with temporal segregation being a most pronounced mechanism. Our findings reinforce the idea that the coexistence mechanisms underlying community structure are multidimensional.

12.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200361, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34538144

RESUMEN

Species interactions may vary considerably across space as a result of spatial and environmental gradients. With respect to host-parasite interactions, this suggests that host and parasite species may play different functional roles across the different networks they occur in. Using a global occurrence database of helminth parasites, we examine the conservation of species' roles using data on host-helminth interactions from 299 geopolitical locations. Defining species' roles in a two-dimensional space which captures the tendency of species to be more densely linked within species subgroups than between subgroups, we quantified species' roles in two ways, which captured if and which species' roles are conserved by treating species' utilization of this two-dimensional space as continuous, while also classifying species into categorical roles. Both approaches failed to detect the conservation of species' roles for a single species out of over 38 000 host and helminth parasite species. Together, our findings suggest that species' roles in host-helminth networks may not be conserved, pointing to the potential role of spatial and environmental gradients, as well as the importance of the context of the local host and helminth parasite community. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Asunto(s)
Helmintos/fisiología , Interacciones Huésped-Parásitos , Análisis Espacial , Animales , Especificidad de la Especie
13.
Nature ; 595(7865): 75-79, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163068

RESUMEN

Climate change is forcing the redistribution of life on Earth at an unprecedented velocity1,2. Migratory birds are thought to help plants to track climate change through long-distance seed dispersal3,4. However, seeds may be consistently dispersed towards cooler or warmer latitudes depending on whether the fruiting period of a plant species coincides with northward or southward migrations. Here we assess the potential of plant communities to keep pace with climate change through long-distance seed dispersal by migratory birds. To do so, we combine phenological and migration information with data on 949 seed-dispersal interactions between 46 bird and 81 plant species from 13 woodland communities across Europe. Most of the plant species (86%) in these communities are dispersed by birds migrating south, whereas only 35% are dispersed by birds migrating north; the latter subset is phylogenetically clustered in lineages that have fruiting periods that overlap with the spring migration. Moreover, the majority of this critical dispersal service northwards is provided by only a few Palaearctic migrant species. The potential of migratory birds to assist a small, non-random sample of plants to track climate change latitudinally is expected to strongly influence the formation of novel plant communities, and thus affect their ecosystem functions and community assembly at higher trophic levels.


Asunto(s)
Aclimatación , Migración Animal , Aves/fisiología , Frío , Calentamiento Global , Plantas , Dispersión de Semillas , Animales , Ecosistema , Europa (Continente) , Vuelo Animal , Mar Mediterráneo
14.
Proc Biol Sci ; 288(1947): 20203143, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33757356

RESUMEN

The scaling relationship observed between species richness and the geographical area sampled (i.e. the species-area relationship (SAR)) is a widely recognized macroecological relationship. Recently, this theory has been extended to trophic interactions, suggesting that geographical area may influence the structure of species interaction networks (i.e. network-area relationships (NARs)). Here, we use a global dataset of host-helminth parasite interactions to test existing predictions from macroecological theory. Scaling between single locations to the global host-helminth network by sequentially adding networks together, we find support that geographical area influences species richness and the number of species interactions in host-helminth networks. However, species-area slopes were larger for host species relative to their helminth parasites, counter to theoretical predictions. Lastly, host-helminth network modularity-capturing the tendency of the network to form into separate subcommunities-decreased with increasing area, also counter to theoretical predictions. Reconciling this disconnect between existing theory and observed SAR and NAR will provide insight into the spatial structuring of ecological networks, and help to refine theory to highlight the effects of network type, species distributional overlap, and the specificity of trophic interactions on NARs.


Asunto(s)
Helmintos , Parásitos , Animales , Especificidad del Huésped , Interacciones Huésped-Parásitos
15.
Ecol Lett ; 23(12): 1789-1799, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32969577

RESUMEN

Ecological interactions shape the evolution of multiple species traits in populations. These traits are often linked to each other through genetic correlations, affecting how each trait evolves through selection imposed by interacting partners. Here, we integrate quantitative genetics, coevolutionary theory and network science to explore how trait correlations affect the coevolution of mutualistic species not only in pairs of species but also in species-rich networks across space. We show that genetic correlations may determine the pace of coevolutionary change, affect species abundances and fuel divergence among populations of the same species. However, this trait divergence promoted by genetic correlations is partially buffered by the nested structure of species-rich mutualisms. Our study, therefore, highlights how coevolution and its ecological consequences may result from conflicting processes at different levels of organisation, ranging from genes to communities.


Asunto(s)
Evolución Biológica , Simbiosis , Fenotipo
16.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126954

RESUMEN

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Asunto(s)
Conservación de los Recursos Naturales , Animales , Evolución Biológica , Tamaño Corporal , Extinción Biológica
17.
Biol Lett ; 15(7): 20190264, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31288682

RESUMEN

Juvenile animals generally disperse from their birthplace to their future breeding territories. In fragmented landscapes, habitat-specialist species must disperse through the anthropogenic matrix where remnant habitats are embedded. Here, we test the hypothesis that dispersing juvenile frugivores leave a footprint in the form of seed deposition through the matrix of fragmented landscapes. We focused on the Sardinian warbler ( Sylvia melanocephala), a resident frugivorous passerine. We used data from field sampling of bird-dispersed seeds in the forest and matrix of a fragmented landscape, subsequent disperser identification through DNA-barcoding analysis, and data from a national bird-ringing programme. Seed dispersal by Sardinian warblers was confined to the forest most of the year, but warblers contributed a peak of seed-dispersal events in the matrix between July and October, mainly attributable to dispersing juveniles. Our study uniquely connects animal and plant dispersal, demonstrating that juveniles of habitat-specialist frugivores can provide mobile-link functions transiently, but in a seasonally predictable way.


Asunto(s)
Dispersión de Semillas , Animales , Ecosistema , Bosques , Semillas , Árboles
18.
Sci Adv ; 5(6): eaav6699, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31223648

RESUMEN

Species on Earth are interconnected with each other through ecological interactions. Defaunation can erode those connections, yet we lack evolutionary predictions about the consequences of losing interactions in human-modified ecosystems. We quantified the fate of the evolutionary history of avian-seed dispersal interactions across tropical forest fragments by combining the evolutionary distinctness of the pairwise-partner species, a proxy to their unique functional features. Both large-seeded plant and large-bodied bird species showed the highest evolutionary distinctness. We estimate a loss of 3.5 to 4.7 × 104 million years of cumulative evolutionary history of interactions due to defaunation. Bird-driven local extinctions mainly erode the most evolutionarily distinct interactions. However, the persistence of less evolutionarily distinct bird species in defaunated areas exerts a phylogenetic rescue effect through seed dispersal of evolutionarily distinct plant species.


Asunto(s)
Aves/fisiología , Plantas/genética , Dispersión de Semillas/fisiología , Semillas/fisiología , Animales , Evolución Biológica , Ecosistema , Bosques , Humanos , Filogenia
19.
J Anim Ecol ; 88(6): 903-914, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883711

RESUMEN

Despite great interest in metrics to quantify the structure of ecological networks, the effects of sampling and scale remain poorly understood. In fact, one of the most challenging issues in ecology is how to define suitable scales (i.e., temporal or spatial) to accurately describe and understand ecological systems. Here, we sampled a series of ant-plant interaction networks in the southern Brazilian Amazon rainforest in order to determine whether the spatial sampling scale, from local to regional, affects our understanding of the structure of these networks. To this end, we recorded ant-plant interactions in adjacent 25 × 30 m subplots (local sampling scale) nested within twelve 250 × 30 m plots (regional sampling scale). Moreover, we combined adjacent or random subplots and plots in order to increase the spatial sampling scales at the local and regional levels. We then calculated commonly used binary and quantitative network-level metrics for both sampling scales (i.e., number of species and interactions, nestedness, specialization and modularity), all of which encompass a wide array of structural patterns in interaction networks. We observed increasing species and interactions across sampling scales, and while most network descriptors remained relatively constant at the local level, there was more variation at the regional scale. Among all metrics, specialization was most constant across different spatial sampling scales. Furthermore, we observed that adjacent assembly did not generate more variation in network descriptor values compared to random assembly. This finding indicates that the spatially aggregated distribution of species/individuals and abiotic conditions does not affect the organization of these interacting assemblages. Our results have a direct impact on our empirical and theoretical understanding of the ecological dynamics of species interactions by demonstrating that small spatial sampling scales should suffice to record some patterns commonly found in ant-plant interaction networks in a highly diverse tropical rainforest.


Asunto(s)
Hormigas , Animales , Brasil , Ecología , Ecosistema , Plantas
20.
Sci Rep ; 9(1): 4711, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886227

RESUMEN

The honeybee is the primary managed species worldwide for both crop pollination and honey production. Owing to beekeeping activity, its high relative abundance potentially affects the structure and functioning of pollination networks in natural ecosystems. Given that evidences about beekeeping impacts are restricted to observational studies of specific species and theoretical simulations, we still lack experimental data to test for their larger-scale impacts on biodiversity. Here we used a three-year field experiment in a natural ecosystem to compare the effects of pre- and post-establishment stages of beehives on the pollination network structure and plant reproductive success. Our results show that beekeeping reduces the diversity of wild pollinators and interaction links in the pollination networks. It disrupts their hierarchical structural organization causing the loss of interactions by generalist species, and also impairs pollination services by wild pollinators through reducing the reproductive success of those plant species highly visited by honeybees. High-density beekeeping in natural areas appears to have lasting, more serious negative impacts on biodiversity than was previously assumed.


Asunto(s)
Apicultura , Abejas/fisiología , Biodiversidad , Germinación/fisiología , Polinización/fisiología , Animales , Frutas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...