Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 9(2): e0115421, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34612664

RESUMEN

To successfully complete malolactic fermentation (MLF), Oenococcus oeni must overcome wine stress conditions of low pH, high ethanol, and the presence of SO2. Failure to complete MLF may result in detrimental effects to the quality and stability of the resulting wines. Research efforts to date have focused on elucidating the mechanisms and genetic features that confer the ability to withstand low pH and high ethanol concentrations on O. oeni; however, the responses to SO2 stress are less well defined. This study focused on characterizing the transcriptional response of O. oeni to SO2 challenge during cultivation in a continuous system at wine-like pH (3.5). This experimental design allowed the precise discrimination of transcriptional changes linked to SO2 stress from responses associated with growth stage and cultivation parameters. Differential gene expression analysis revealed major transcriptional changes following SO2 exposure and suggested that this compound primarily interacts with intracellular proteins, DNA, and the cell envelope of O. oeni. The molecular chaperone hsp20, which has a demonstrated function in the heat, ethanol, and acid stress response, was highly upregulated, confirming its additional role in the response of this species to SO2 stress. This work also reports the first nanopore-based complete genome assemblies for O. oeni. IMPORTANCE Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni, a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO2, an antiseptic and antioxidant compound regularly used in winemaking. Understanding the physiological changes induced in O. oeni by SO2 stress is essential for the development of more robust starter cultures and methods for their use. This study describes the main transcriptional changes induced by SO2 stress in the wine bacterium O. oeni and provides foundational understanding on how this compound interacts with the cellular components and the induced protective mechanisms of this species.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Malatos/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Sulfitos/metabolismo , Membrana Celular/metabolismo , Daño del ADN/genética , Etanol/análisis , Fermentación , Genoma Bacteriano/genética , Proteínas del Choque Térmico HSP20/metabolismo , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Estrés Fisiológico/fisiología , Transcripción Genética/genética , Transcriptoma/genética , Vino/microbiología
2.
Plant Methods ; 10: 29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25250056

RESUMEN

BACKGROUND: An important step in characterising the function of a gene is identifying the cells in which it is expressed. Traditional methods to determine this include in situ hybridisation, gene promoter-reporter fusions or cell isolation/purification techniques followed by quantitative PCR. These methods, although frequently used, can have limitations including their time-consuming nature, limited specificity, reliance upon well-annotated promoters, high cost, and the need for specialized equipment. In situ PCR is a relatively simple and rapid method that involves the amplification of specific mRNA directly within plant tissue whilst incorporating labelled nucleotides that are subsequently detected by immunohistochemistry. Another notable advantage of this technique is that it can be used on plants that are not easily genetically transformed. RESULTS: An optimised workflow for in-tube and on-slide in situ PCR is presented that has been evaluated using multiple plant species and tissue types. The protocol includes optimised methods for: (i) fixing, embedding, and sectioning of plant tissue; (ii) DNase treatment; (iii) in situ RT-PCR with the incorporation of DIG-labelled nucleotides; (iv) signal detection using colourimetric alkaline phosphatase substrates; and (v) mounting and microscopy. We also provide advice on troubleshooting and the limitations of using fluorescence as an alternative detection method. Using our protocol, reliable results can be obtained within two days from harvesting plant material. This method requires limited specialized equipment and can be adopted by any laboratory with a vibratome (vibrating blade microtome), a standard thermocycler, and a microscope. We show that the technique can be used to localise gene expression with cell-specific resolution. CONCLUSIONS: The in situ PCR method presented here is highly sensitive and specific. It reliably identifies the cellular expression pattern of even highly homologous and low abundance transcripts within target tissues, and can be completed within two days of harvesting tissue. As such, it has considerable advantages over other methods, especially in terms of time and cost. We recommend its adoption as the standard laboratory technique of choice for demonstrating the cellular expression pattern of a gene of interest.

3.
Plant Cell Environ ; 37(2): 520-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23926961

RESUMEN

We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo .


Asunto(s)
Acuaporinas/fisiología , Glycine max/fisiología , Proteínas de Plantas/fisiología , Vitis/fisiología , Agua/metabolismo , Zea mays/fisiología , Acuaporinas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Estomas de Plantas/metabolismo , Transpiración de Plantas , Transducción de Señal , Glycine max/genética , Glycine max/metabolismo , Vitis/genética , Vitis/metabolismo , Xilema , Zea mays/genética , Zea mays/metabolismo
4.
Nat Biotechnol ; 30(4): 360-4, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22407351

RESUMEN

The ability of wheat to maintain a low sodium concentration ([Na(+)]) in leaves correlates with improved growth under saline conditions. This trait, termed Na(+) exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na(+) exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na(+)] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na(+)-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na(+) from the xylem and reduce transport of Na(+) to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na(+)] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.


Asunto(s)
Transporte Biológico , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Sodio/metabolismo , Simportadores/genética , Triticum/genética , Animales , Proteínas de Transporte de Catión/aislamiento & purificación , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/genética , Cruzamientos Genéticos , Grano Comestible/genética , Datos de Secuencia Molecular , Oocitos , Hojas de la Planta/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Suelo , Simportadores/aislamiento & purificación , Simportadores/metabolismo , Triticum/crecimiento & desarrollo , Xenopus laevis , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...