Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 13(7): 1182-1190, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859867

RESUMEN

A platform to accelerate optimization of proteolysis targeting chimeras (PROTACs) has been developed using a direct-to-biology (D2B) approach with a focus on linker effects. A large number of linker analogs-with varying length, polarity, and rigidity-were rapidly prepared and characterized in four cell-based assays by streamlining time-consuming steps in synthesis and purification. The expansive dataset informs on linker structure-activity relationships (SAR) for in-cell E3 ligase target engagement, degradation, permeability, and cell toxicity. Unexpected aspects of linker SAR was discovered, consistent with literature reports on "linkerology", and the method dramatically speeds up empirical optimization. Physicochemical property trends emerged, and the platform has the potential to rapidly expand training sets for more complex prediction models. In-depth validation studies were carried out and confirm the D2B platform is a valuable tool to accelerate PROTAC design-make-test cycles.

2.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415038

RESUMEN

Membrane contact sites are critical junctures for organelle signaling and communication. Endoplasmic reticulum-plasma membrane (ER-PM) contact sites were the first membrane contact sites to be described; however, the protein composition and molecular function of these sites is still emerging. Here, we leverage yeast and Drosophila model systems to uncover a novel role for the Hobbit (Hob) proteins at ER-PM contact sites. We find that Hobbit localizes to ER-PM contact sites in both yeast cells and the Drosophila larval salivary glands, and this localization is mediated by an N-terminal ER membrane anchor and conserved C-terminal sequences. The C-terminus of Hobbit binds to plasma membrane phosphatidylinositols, and the distribution of these lipids is altered in hobbit mutant cells. Notably, the Hobbit protein is essential for viability in Drosophila, providing one of the first examples of a membrane contact site-localized lipid binding protein that is required for development.


Asunto(s)
Proteínas Portadoras , Proteínas de Drosophila/genética , Retículo Endoplásmico , Proteínas de Transporte Vesicular/genética , Animales , Membrana Celular/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles , Saccharomyces cerevisiae
3.
Elife ; 102021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524084

RESUMEN

Membrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface, where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway that is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer's disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.


Asunto(s)
Endosomas/enzimología , Proteínas de Unión al GTP/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Nexinas de Clasificación/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Endosomas/genética , Proteínas de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica , Células HeLa , Humanos , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Nexinas de Clasificación/genética , Factores de Tiempo , Ubiquitinación , Proteínas de Transporte Vesicular/genética
4.
Mol Biol Cell ; 31(12): 1302-1313, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267208

RESUMEN

Eukaryotic cells are compartmentalized into organelles by intracellular membranes. While the organelles are distinct, many of them make intimate contact with one another. These contacts were first observed in the 1950s, but only recently have the functions of these contact sites begun to be understood. In yeast, the endoplasmic reticulum (ER) makes extensive intermembrane contacts with the plasma membrane (PM), covering ∼40% of the PM. Many functions of ER-PM contacts have been proposed, including nonvesicular lipid trafficking, ion transfer, and as signaling hubs. Surprisingly, cells that lack ER-PM contacts grow well, indicating that alternative pathways may be compensating for the loss of ER-PM contact. To better understand the function of ER-PM contact sites we used saturating transposon mutagenesis to identify synthetic lethal mutants in a yeast strain lacking ER-PM contact sites. The strongest hits were components of the ESCRT complexes. The synthetic lethal mutants have low levels of some lipid species but accumulate free fatty acids and lipid droplets. We found that only ESCRT-III components are synthetic lethal, indicating that Vps4 and other ESCRT complexes do not function in this pathway. These data suggest that ESCRT-III proteins and ER-PM contact sites act in independent pathways to maintain lipid homeostasis.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Lípidos/genética , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Elife ; 62017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661397

RESUMEN

The lysosome plays an important role in maintaining cellular nutrient homeostasis. Regulation of nutrient storage can occur by the ubiquitination of certain transporters that are then sorted into the lysosome lumen for degradation. To better understand the underlying mechanism of this process, we performed genetic screens to identify components of the sorting machinery required for vacuole membrane protein degradation. These screens uncovered genes that encode a ubiquitin ligase complex, components of the PtdIns 3-kinase complex, and the ESCRT machinery. We developed a novel ubiquitination system, Rapamycin-Induced Degradation (RapiDeg), to test the sorting defects caused by these mutants. These tests revealed that ubiquitinated vacuole membrane proteins recruit ESCRTs to the vacuole surface, where they mediate cargo sorting and direct cargo delivery into the vacuole lumen. Our findings demonstrate that the ESCRTs can function at both the late endosome and the vacuole membrane to mediate cargo sorting and intra-luminal vesicle formation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Ubiquitinación , Regulación hacia Abajo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Pruebas Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...