Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(2): 215-233, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33208468

RESUMEN

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.


Asunto(s)
Cobre/fisiología , Aparato de Golgi/fisiología , Homeostasis/fisiología , Biogénesis de Organelos , Sinapsis/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , Drosophila , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Femenino , Humanos , Masculino , ARN Interferente Pequeño , Sinapsis/ultraestructura
2.
Elife ; 62017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895532

RESUMEN

The synaptic vesicle Ca2+ sensor Synaptotagmin binds Ca2+ through its two C2 domains to trigger membrane interactions. Beyond membrane insertion by the C2 domains, other requirements for Synaptotagmin activity are still being elucidated. To identify key residues within Synaptotagmin required for vesicle cycling, we took advantage of observations that mutations in the C2B domain Ca2+-binding pocket dominantly disrupt release from invertebrates to humans. We performed an intragenic screen for suppressors of lethality induced by expression of Synaptotagmin C2B Ca2+-binding mutants in Drosophila. This screen uncovered essential residues within Synaptotagmin that suggest a structural basis for several activities required for fusion, including a C2B surface implicated in SNARE complex interaction that is required for rapid synchronization and Ca2+ cooperativity of vesicle release. Using electrophysiological, morphological and computational characterization of these mutants, we propose a sequence of molecular interactions mediated by Synaptotagmin that promote Ca2+ activation of the synaptic vesicle fusion machinery.


Asunto(s)
Calcio/metabolismo , Vesículas Citoplasmáticas/metabolismo , Fusión de Membrana , Proteínas SNARE/metabolismo , Sinaptotagminas/metabolismo , Animales , Drosophila , Sinaptotagminas/genética
3.
Sci Rep ; 6: 32132, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573697

RESUMEN

The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Canales de Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Sinapsis/genética , Proteínas Supresoras de Tumor/genética
4.
Mol Cell Neurosci ; 52: 161-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159779

RESUMEN

Complexins are small α-helical proteins that modulate neurotransmitter release by binding to SNARE complexes during synaptic vesicle exocytosis. They have been found to function as fusion clamps to inhibit spontaneous synaptic vesicle fusion in the absence of Ca(2+), while also promoting evoked neurotransmitter release following an action potential. Complexins consist of an N-terminal domain and an accessory α-helix that regulates the activating and inhibitory properties of the protein, respectively, and a central α-helix that binds the SNARE complex and is essential for both functions. In addition, complexins contain a largely unstructured C-terminal domain whose role in synaptic vesicle cycling is poorly defined. Here, we demonstrate that the C-terminus of Drosophila complexin (DmCpx) regulates localization to synapses and that alternative splicing of the C-terminus can differentially regulate spontaneous and evoked neurotransmitter release. Characterization of the single DmCpx gene by mRNA analysis revealed expression of two alternatively expressed isoforms, DmCpx7A and DmCpx7B, which encode proteins with different C-termini that contain or lack a membrane tethering prenylation domain. The predominant isoform, DmCpx7A, is further modified by RNA editing within this C-terminal region. Functional analysis of the splice isoforms showed that both are similarly localized to synaptic boutons at larval neuromuscular junctions, but have differential effects on the regulation of evoked and spontaneous fusion. These data indicate that the C-terminus of Drosophila complexin regulates both spontaneous and evoked release through separate mechanisms and that alternative splicing generates isoforms with distinct effects on the two major modes of synaptic vesicle fusion at synapses.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Western Blotting , Drosophila , Proteínas de Drosophila/genética , Exocitosis , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo
5.
J Neurosci ; 32(50): 18054-67, 18067a, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238721

RESUMEN

Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr)-null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals.


Asunto(s)
Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Western Blotting , Drosophila , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp , Vesículas Sinápticas/ultraestructura
6.
J Neurosci ; 32(50): 18234-45, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238737

RESUMEN

Neurotransmitter release following synaptic vesicle (SV) fusion is the fundamental mechanism for neuronal communication. Synaptic exocytosis is a specialized form of intercellular communication that shares a common SNARE-mediated fusion mechanism with other membrane trafficking pathways. The regulation of synaptic vesicle fusion kinetics and short-term plasticity is critical for rapid encoding and transmission of signals across synapses. Several families of SNARE-binding proteins have evolved to regulate synaptic exocytosis, including Synaptotagmin (SYT) and Complexin (CPX). Here, we demonstrate that Drosophila CPX controls evoked fusion occurring via the synchronous and asynchronous pathways. cpx(-/-) mutants show increased asynchronous release, while CPX overexpression largely eliminates the asynchronous component of fusion. We also find that SYT and CPX coregulate the kinetics and Ca(2+) co-operativity of neurotransmitter release. CPX functions as a positive regulator of release in part by coupling the Ca(2+) sensor SYT to the fusion machinery and synchronizing its activity to speed fusion. In contrast, syt(-/-); cpx(-/-) double mutants completely abolish the enhanced spontaneous release observe in cpx(-/-) mutants alone, indicating CPX acts as a fusion clamp to block premature exocytosis in part by preventing inappropriate activation of the SNARE machinery by SYT. CPX levels also control the size of synaptic vesicle pools, including the immediate releasable pool and the ready releasable pool-key elements of short-term plasticity that define the ability of synapses to sustain responses during burst firing. These observations indicate CPX regulates both spontaneous and evoked fusion by modulating the timing and properties of SYT activation during the synaptic vesicle cycle.


Asunto(s)
Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Animales , Western Blotting , Drosophila , Proteínas de Drosophila/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/fisiología , Técnicas de Inactivación de Genes , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Unión Neuromuscular/metabolismo , Técnicas de Placa-Clamp
7.
J Cell Biol ; 193(1): 201-17, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21464232

RESUMEN

Structural remodeling of synapses in response to growth signals leads to long-lasting alterations in neuronal function in many systems. Synaptic growth factor receptors alter their signaling properties during transit through the endocytic pathway, but the mechanisms controlling cargo traffic between endocytic compartments remain unclear. Nwk (Nervous Wreck) is a presynaptic F-BAR/SH3 protein that regulates synaptic growth signaling in Drosophila melanogaster. In this paper, we show that Nwk acts through a physical interaction with sorting nexin 16 (SNX16). SNX16 promotes synaptic growth signaling by activated bone morphogenic protein receptors, and live imaging in neurons reveals that SNX16-positive early endosomes undergo transient interactions with Nwk-containing recycling endosomes. We identify an alternative signal termination pathway in the absence of Snx16 that is controlled by endosomal sorting complex required for transport (ESCRT)-mediated internalization of receptors into the endosomal lumen. Our results define a presynaptic trafficking pathway mediated by SNX16, NWK, and the ESCRT complex that functions to control synaptic growth signaling at the interface between endosomal compartments.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Transducción de Señal , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Proteínas de Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nexinas de Clasificación/metabolismo
8.
J Neurosci ; 30(15): 5189-203, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392941

RESUMEN

The monopolar spindle-one-binder (Mob) family of kinase-interacting proteins regulate cell cycle and cell morphology, and their dysfunction has been linked to cancer. Models for Mob function are primarily based on studies of Mob1 and Mob2 family members in yeast. In contrast, the function of the highly conserved metazoan Phocein/Mob3 subfamily is unknown. We identified the Drosophila Phocein homolog (DMob4) as a regulator of neurite branching in a genome-wide RNA interference screen for neuronal morphology mutants. To further characterize DMob4, we generated null and hypomorphic alleles and performed in vivo cell biological and physiological analysis. We find that DMob4 plays a prominent role in neural function, regulating axonal transport, membrane excitability, and organization of microtubule networks. DMob4 mutant neuromuscular synapses also show a profound overgrowth of synaptic boutons, similar to known Drosophila endocytotic mutants. DMob4 and human Phocein are >80% identical, and the lethality of DMob4 mutants can be rescued by a human phocein transgene, indicating a conservation of function across evolution. These findings suggest a novel role for Phocein proteins in the regulation of axonal transport, neurite elongation, synapse formation, and microtubule organization.


Asunto(s)
Transporte Axonal/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Humanos , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Músculos/fisiología , Mutación , Proteínas del Tejido Nervioso/genética , Neuritas/fisiología , Unión Neuromuscular/fisiología , Neuronas/ultraestructura , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Terminales Presinápticos/fisiología
9.
J Cell Biol ; 187(2): 295-310, 2009 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-19822673

RESUMEN

Ca(2+) influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca(2+) in triggering vesicle fusion though the Ca(2+) sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca(2+) influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca(2+)-binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca(2+)-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca(2+) sensor for presynaptic vesicle fusion.


Asunto(s)
Drosophila melanogaster/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Sinaptotagminas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Complemento C2a/genética , Complemento C2a/metabolismo , Complemento C2b/genética , Complemento C2b/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Unión Neuromuscular/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinaptotagminas/química , Sinaptotagminas/genética
10.
J Cell Biol ; 173(1): 69-82, 2006 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-16606691

RESUMEN

Scramblases are a family of single-pass plasma membrane proteins, identified by their purported ability to scramble phospholipids across the two layers of plasma membrane isolated from platelets and red blood cells. However, their true in vivo role has yet to be elucidated. We report the generation and isolation of null mutants of two Scramblases identified in Drosophila melanogaster. We demonstrate that flies lacking either or both of these Scramblases are not compromised in vivo in processes requiring scrambling of phospholipids. Instead, we show that D. melanogaster lacking both Scramblases have more vesicles and display enhanced recruitment from a reserve pool of vesicles and increased neurotransmitter secretion at the larval neuromuscular synapses. These defects are corrected by the introduction of a genomic copy of the Scramb 1 gene. The lack of phenotypes related to failure of scrambling and the neurophysiological analysis lead us to propose that Scramblases play a modulatory role in the process of neurotransmission.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/anomalías , Unión Neuromuscular/enzimología , Proteínas de Transferencia de Fosfolípidos/fisiología , Transmisión Sináptica/fisiología , Animales , Apoptosis/genética , Membrana Celular/enzimología , Membrana Celular/genética , Bases de Datos de Ácidos Nucleicos , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Exocitosis/genética , Regulación Enzimológica de la Expresión Génica/genética , Inmunidad Innata/genética , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación/genética , Unión Neuromuscular/genética , Neurotransmisores/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Fosfolípidos/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Membranas Sinápticas/enzimología , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/genética , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
11.
Biol Cell ; 94(4-5): 233-41, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12489692

RESUMEN

High molecular weight (HMW, >15 kDa) but not low molecular weight (LMW, <15 kDa) polylysines (PLs) bound and induced permeability changes in rat spermatid plasma membranes, estimated by Mn2+ quenching of intracellular indo-1 fluorescence (K(1/2) = 3.3 +/- 0.5 microg/ml) and Co2+ quenching of intracellular calcein. The pharmacology of the Mn2+ entry pathway activated by HMW PL does not suggest that Ca2+ channels are involved in this phenomenon. Concentrations of HMW PL that induced divalent ion entry did not induce the entry of ethidium bromide, suggesting that HMW PL first bound and perturbed the plasma membrane structure inducing a non-specific increase in membrane permeability. High concentrations of HMW PL induced cell lysis (K(1/2) = 23 microg/ml). The binding of HMW PL, initially homogenous on the cell surface, subsequently progressed to a segregated pattern resembling a clustering phenomenon.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Polilisina/metabolismo , Túbulos Seminíferos/metabolismo , Espermátides/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Cationes/metabolismo , Cationes/farmacología , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Cobalto , Relación Dosis-Respuesta a Droga , Etidio , Indoles , Masculino , Manganeso , Péptidos/metabolismo , Péptidos/farmacología , Polilisina/farmacología , Ratas , Ratas Wistar , Túbulos Seminíferos/citología , Espermátides/citología , Espermátides/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Espermatogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...