Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38690786

RESUMEN

Bacterial persistence in the rhizosphere and colonization of root niches are critical for the establishment of many beneficial plant-bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonization of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonization (rhizosphere progressive), and a further 119 genes necessary for colonization. Common determinants reveal a need to synthesize essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonization. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonization in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.


Asunto(s)
Raíces de Plantas , Rhizobium leguminosarum , Rizosfera , Simbiosis , Raíces de Plantas/microbiología , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/fisiología , Fabaceae/microbiología , Fabaceae/crecimiento & desarrollo , Microbiología del Suelo
3.
Microbiome ; 12(1): 81, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715147

RESUMEN

BACKGROUND: After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS: To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS: DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.


Asunto(s)
Elementos Transponibles de ADN , Microbiota , Rizosfera , Plásmidos/genética , Raíces de Plantas/microbiología , Proteobacteria/genética , Citometría de Flujo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microbiología del Suelo
5.
Environ Microbiol ; 25(2): 383-396, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36428208

RESUMEN

Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.


Asunto(s)
Bacterias , Técnicas Biosensibles , Bacterias/genética , Genes Bacterianos , Expresión Génica
6.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412890

RESUMEN

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Asunto(s)
Azorhizobium caulinodans , Grano Comestible , Hordeum , Fijación del Nitrógeno , Nitrogenasa , Raíces de Plantas , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Grano Comestible/microbiología , Hordeum/microbiología , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Raíces de Plantas/microbiología , Simbiosis
7.
Mol Plant Microbe Interact ; 34(12): 1390-1398, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34875178

RESUMEN

An Azorhizobium caulinodans phaC mutant (OPS0865) unable to make poly-3-hydroxybutyrate (PHB), grows poorly on many carbon sources and cannot fix nitrogen in laboratory culture. However, when inoculated onto its host plant, Sesbania rostrata, the phaC mutant consistently fixed nitrogen. Upon reisolation from S. rostrata root nodules, a suppressor strain (OPS0921) was isolated that has significantly improved growth on a variety of carbon sources and also fixes nitrogen in laboratory culture. The suppressor retains the original mutation and is unable to synthesize PHB. Genome sequencing revealed a suppressor transition mutation, G to A (position 357,354), 13 bases upstream of the ATG start codon of phaR in its putative ribosome binding site (RBS). PhaR is the global regulator of PHB synthesis but also has other roles in regulation within the cell. In comparison with the wild type, translation from the phaR native RBS is increased approximately sixfold in the phaC mutant background, suggesting that the level of PhaR is controlled by PHB. Translation from the phaR mutated RBS (RBS*) of the suppressor mutant strain (OPS0921) is locked at a low basal rate and unaffected by the phaC mutation, suggesting that RBS* renders the level of PhaR insensitive to regulation by PHB. In the original phaC mutant (OPS0865), the lack of nitrogen fixation and poor growth on many carbon sources is likely to be due to increased levels of PhaR causing dysregulation of its complex regulon, because PHB formation, per se, is not required for effective nitrogen fixation in A. caulinodans.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Azorhizobium caulinodans , Proteínas Bacterianas/metabolismo , Hidroxibutiratos , Fijación del Nitrógeno , Poliésteres , Simbiosis
8.
Front Plant Sci ; 12: 680981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557206

RESUMEN

Pigeon pea (Cajanus cajan L. Millsp. ) is a legume crop resilient to climate change due to its tolerance to drought. It is grown by millions of resource-poor farmers in semiarid and tropical subregions of Asia and Africa and is a major contributor to their nutritional food security. Pigeon pea is the sixth most important legume in the world, with India contributing more than 70% of the total production and harbouring a wide variety of cultivars. Nevertheless, the low yield of pigeon pea grown under dry land conditions and its yield instability need to be improved. This may be done by enhancing crop nodulation and, hence, biological nitrogen fixation (BNF) by supplying effective symbiotic rhizobia through the application of "elite" inoculants. Therefore, the main aim in this study was the isolation and genomic analysis of effective rhizobial strains potentially adapted to drought conditions. Accordingly, pigeon pea endosymbionts were isolated from different soil types in Southern, Central, and Northern India. After functional characterisation of the isolated strains in terms of their ability to nodulate and promote the growth of pigeon pea, 19 were selected for full genome sequencing, along with eight commercial inoculant strains obtained from the ICRISAT culture collection. The phylogenomic analysis [Average nucleotide identity MUMmer (ANIm)] revealed that the pigeon pea endosymbionts were members of the genera Bradyrhizobium and Ensifer. Based on nodC phylogeny and nod cluster synteny, Bradyrhizobium yuanmingense was revealed as the most common endosymbiont, harbouring nod genes similar to those of Bradyrhizobium cajani and Bradyrhizobium zhanjiangense. This symbiont type (e.g., strain BRP05 from Madhya Pradesh) also outperformed all other strains tested on pigeon pea, with the notable exception of an Ensifer alkalisoli strain from North India (NBAIM29). The results provide the basis for the development of pigeon pea inoculants to increase the yield of this legume through the use of effective nitrogen-fixing rhizobia, tailored for the different agroclimatic regions of India.

9.
mBio ; 12(4): e0042321, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225488

RESUMEN

Pigeon pea, a legume crop native to India, is the primary source of protein for more than a billion people in developing countries. The plant can form symbioses with N2-fixing bacteria; however, reports of poor crop nodulation in agricultural soils abound. We report here a study of the bacterial community associated with pigeon pea, with a special focus on the symbiont population in different soils and vegetative and non-vegetative plant growth. Location with respect to the plant roots was determined to be the main factor controlling the bacterial community, followed by developmental stage and soil type. Plant genotype plays only a minor role. Pigeon pea roots have a reduced microbial diversity compared to the surrounding soil and select for Proteobacteria, especially for Rhizobium spp., during vegetative growth. While Bradyrhizobium, a native symbiont of pigeon pea, can be found associating with roots, its presence is dependent on plant variety and soil conditions. A combination of 16S rRNA gene amplicon survey, strain isolation, and co-inoculation with nodule-forming Bradyrhizobium spp. and non-N2-fixing Rhizobium spp. demonstrated that the latter is a much more successful colonizer of pigeon pea roots. Poor nodulation of pigeon pea in Indian soils may be caused by a poor Bradyrhizobium competitiveness against non-nodulating root colonizers such as Rhizobium. Hence, inoculant strain selection of symbionts for pigeon pea should be based not only on their nitrogen fixation potential but, more importantly, on their competitiveness in agricultural soils. IMPORTANCE Plant symbiosis with N2-fixing bacteria is a key to sustainable, low-input agriculture. While there are ongoing projects aiming to increase the yield of cereals using plant genetics and host-microbiota interaction engineering, the biggest potential lies in legume plants. Pigeon pea is a basic food source for a billion low-income people in India. Improving its interactions with N2-fixing rhizobia could dramatically reduce food poverty in India. Despite the Indian origin of this plant, pigeon pea nodulates only poorly in native soils. While there have been multiple attempts to select the best N2-fixing symbionts, there are no reliable strains available for geographically widespread use. In this article, using 16S rRNA gene amplicon, culturomics, and plant co-inoculation assays, we show that the native pigeon pea symbionts such as Bradyrhizobium spp. are able to nodulate their host, despite being poor competitors for colonizing roots. Hence, in this system, the establishment of effective symbiosis seems decoupled from microbial competition on plant roots. Thus, the effort of finding suitable symbionts should focus not only on their N2-fixing potential but also on their ability to colonize. Increasing pigeon pea yield is a low-hanging fruit to reduce world hunger and degradation of the environment through the overuse of synthetic fertilizers.


Asunto(s)
Bradyrhizobium/metabolismo , Cajanus/microbiología , Microbiota/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Bradyrhizobium/genética , Cajanus/anatomía & histología , India , Microbiota/genética , Fijación del Nitrógeno , Filogenia , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis
10.
Front Microbiol ; 12: 690439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248916

RESUMEN

Assessment of plant-associative bacterial nitrogen (N) fixation is crucial for selection and development of elite diazotrophic inoculants that could be used to supply cereal crops with nitrogen in a sustainable manner. Although diazotrophic bacteria possess diverse oxygen tolerance mechanisms, most require a sub 21% oxygen environment to achieve optimal stability and function of the N-fixing catalyst nitrogenase. Consequently, assessment of N fixation is routinely carried out on "free-living" bacteria grown in the absence of a host plant and such experiments may not accurately divulge activity in the rhizosphere where the availability and forms of nutrients such as carbon and N, which are key regulators of N fixation, may vary widely. Here, we present a modified in situ acetylene reduction assay (ARA), utilizing the model cereal barley as a host to comparatively assess nitrogenase activity in diazotrophic bacteria. The assay is rapid, highly reproducible, applicable to a broad range of diazotrophs, and can be performed with simple equipment commonly found in most laboratories that investigate plant-microbe interactions. Thus, the assay could serve as a first point of order for high-throughput identification of elite plant-associative diazotrophs.

11.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941672

RESUMEN

Legumes are high in protein and form a valuable part of human diets due to their interaction with symbiotic nitrogen-fixing bacteria known as rhizobia. Plants house rhizobia in specialized root nodules and provide the rhizobia with carbon in return for nitrogen. However, plants usually house multiple rhizobial strains that vary in their fixation ability, so the plant faces an investment dilemma. Plants are known to sanction strains that do not fix nitrogen, but nonfixers are rare in field settings, while intermediate fixers are common. Here, we modeled how plants should respond to an intermediate fixer that was otherwise isogenic and tested model predictions using pea plants. Intermediate fixers were only tolerated when a better strain was not available. In agreement with model predictions, nodules containing the intermediate-fixing strain were large and healthy when the only alternative was a nonfixer, but nodules of the intermediate-fixing strain were small and white when the plant was coinoculated with a more effective strain. The reduction in nodule size was preceded by a lower carbon supply to the nodule even before differences in nodule size could be observed. Sanctioned nodules had reduced rates of nitrogen fixation, and in later developmental stages, sanctioned nodules contained fewer viable bacteria than nonsanctioned nodules. This indicates that legumes can make conditional decisions, most likely by comparing a local nodule-dependent cue of nitrogen output with a global cue, giving them remarkable control over their symbiotic partners.


Asunto(s)
Algoritmos , Fabaceae/metabolismo , Modelos Biológicos , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Carbono/metabolismo , Fabaceae/microbiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología
12.
Environ Microbiol Rep ; 13(4): 428-444, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33538402

RESUMEN

Bacterial colonization of the rhizosphere is critical for the establishment of plant-bacteria interactions that represent a key determinant of plant health and productivity. Plants influence bacterial colonization primarily through modulating the composition of their root exudates and mounting an innate immune response. The outcome is a horizontal filtering of bacteria from the surrounding soil, resulting in a gradient of reduced bacterial diversity coupled with a higher degree of bacterial specialization towards the root. Bacteria-bacteria interactions (BBIs) are also prevalent in the rhizosphere, influencing bacterial persistence and root colonization through metabolic exchanges, secretion of antimicrobial compounds and other processes. Traditionally, bacterial colonization has been examined under sterile laboratory conditions that mitigate the influence of BBIs. Using simplified synthetic bacterial communities combined with microfluidic imaging platforms and transposon mutagenesis screening approaches, we are now able to begin unravelling the molecular mechanisms at play during the early stages of root colonization. This review explores the current state of knowledge regarding bacterial root colonization and identifies key tools for future exploration.


Asunto(s)
Raíces de Plantas , Microbiología del Suelo , Bacterias/genética , Raíces de Plantas/microbiología , Rizosfera , Suelo
13.
Genes (Basel) ; 12(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477547

RESUMEN

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN
14.
Syst Appl Microbiol ; 43(4): 126090, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32690191

RESUMEN

Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the 'R. leguminosarum group': R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28°C and growth was observed in the ranges 8-34°C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G+C content was 60.8mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T=LMG 30526T).


Asunto(s)
Pisum sativum/microbiología , Rhizobium/clasificación , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genotipo , Hibridación de Ácido Nucleico , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/química , Rhizobium/citología , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo , Simbiosis
15.
Proc Natl Acad Sci U S A ; 117(18): 9822-9831, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32317381

RESUMEN

Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.


Asunto(s)
Fabaceae/genética , Fijación del Nitrógeno/genética , Rhizobium leguminosarum/genética , Simbiosis/genética , Fabaceae/metabolismo , Fabaceae/microbiología , Proteínas Fluorescentes Verdes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Plásmidos/genética , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Microbiología del Suelo , Biología Sintética
16.
Nat Commun ; 10(1): 3430, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366919

RESUMEN

The root microbiota is critical for agricultural yield, with growth-promoting bacteria able to solubilise phosphate, produce plant growth hormones, antagonise pathogens and fix N2. Plants control the microorganisms in their immediate environment and this is at least in part through direct selection, the immune system, and interactions with other microorganisms. Considering the importance of the root microbiota for crop yields it is attractive to artificially regulate this environment to optimise agricultural productivity. Towards this aim we express a synthetic pathway for the production of the rhizopine scyllo-inosamine in plants. We demonstrate the production of this bacterial derived signal in both Medicago truncatula and barley and show its perception by rhizosphere bacteria, containing bioluminescent and fluorescent biosensors. This study lays the groundwork for synthetic signalling networks between plants and bacteria, allowing the targeted regulation of bacterial gene expression in the rhizosphere for delivery of useful functions to plants.


Asunto(s)
Bacterias/metabolismo , Hordeum/crecimiento & desarrollo , Inositol/análogos & derivados , Medicago truncatula/crecimiento & desarrollo , Raíces de Plantas/microbiología , Agricultura , Bacterias/genética , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Hordeum/genética , Hordeum/microbiología , Inositol/biosíntesis , Inositol/genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Microbiota , Microbiología del Suelo
17.
Genes (Basel) ; 9(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364862

RESUMEN

Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae, 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.

18.
Curr Opin Microbiol ; 38: 188-196, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28732267

RESUMEN

The holobiont is composed by the plant and its microbiome. In a similar way to ecological systems of higher organisms, the holobiont shows interdependent and complex dynamics [1,2]. While plants originate from seeds, the microbiome has a multitude of sources. The assemblage of these communities depends on the interaction between the emerging seedling and its surrounding environment, with soil being the main source. These microbial communities are controlled by the plant through different strategies, such as the specific profile of root exudates and its immune system. Despite this control, the microbiome is still able to adapt and thrive. The molecular knowledge behind these interactions and microbial '-omic' technologies are developing to the point of enabling holobiont engineering. For a long time microorganisms were in the background of plant biology but new multidisciplinary approaches have led to an appreciation of the importance of the holobiont, where plants and microbes are interdependent.


Asunto(s)
Ecosistema , Microbiota , Plantas/microbiología
19.
Sci Rep ; 6: 28774, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27358031

RESUMEN

Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Microbiota , Saccharum/microbiología , Fenómenos Fisiológicos Bacterianos/genética , Biodiversidad , Análisis por Conglomerados , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Brotes de la Planta/microbiología , Análisis de Componente Principal , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
20.
Mol Plant Microbe Interact ; 28(3): 310-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25514682

RESUMEN

Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. Pisum sativum, Lens culinaris, Vicia sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNA from 100 isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16 to 22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S to 23S ribosomal RNA gene region presented single nucleotide polymorphisms (SNP) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.


Asunto(s)
Fabaceae/microbiología , Metagenómica , Rhizobium leguminosarum/genética , Simbiosis/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Genotipo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Raíces de Plantas/microbiología , Polimorfismo de Nucleótido Simple , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas , Plantones/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...