Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 90: 117315, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37253304

RESUMEN

Neglected tropical diseases (NTDs) have become a significant public health problem worldwide, notably the life-threatening dengue hemorrhagic fever borne by the Aedes aegypti mosquito. Thus, mosquito vector control measures remain essential in public health vector surveillance and control to combat Aedes-borne infections. Therefore, a series of MBH adducts were synthesized and assessed towards the fourth instar mosquito larvae, Aedes aegypti, along with the preliminary structure-activity relationship (SAR). Noteworthy, this compound class might be synthetized by an efficient eco-friendly synthesismethod and a rapid route for the synthesis of commercial larvicide through a single synthetic step. The bioassays showed that this compound class is a promising larvicide to control Aedes aegypti mosquito larvae, mainly 3g, with an LC50 of 41.35 µg/mL, which was higher than evaluated positive controls. Nevertheless, it is a viable larvicidalhit candidate for further hit-to-leadproperties optimization of its biphenyl backbone scaffold with enhanced insecticidalbioactivity. Moreover, scanning electron microscopy analysis suggested a disruption of the osmoregulatory/ionoregulatory functions by the complete deterioration of the terminal exoskeleton hindgut and anal papillae. Therefore, this new study shows the larvicidal efficacy of the tested compounds against the Aedes aegypti larvae.


Asunto(s)
Aedes , Dengue , Insecticidas , Animales , Mosquitos Vectores , Insecticidas/farmacología , Hojas de la Planta , Larva , Relación Estructura-Actividad , Dengue/prevención & control , Extractos Vegetales
2.
Bioorg Med Chem ; 44: 116299, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34225166

RESUMEN

Cinnamic acid derivatives (CAD's) represent a great alternative in the search for insecticides against Aedes aegypti mosquitoes since they have antimicrobial and insecticide properties. Ae. aegypti is responsible for transmitting Dengue, Chikungunya, and Zika viruses, among other arboviruses associated with morbimortality, especially in developing countries. In view of this, in vitro analyses of n-substituted cinnamic acids and esters were performed upon 4th instar larvae (L4) of Ae. aegypti, as well as, molecular docking studies to propose a potential biological target towards this mosquitoes species. The larvicide assays proved that n-substituted ethyl cinnamates showed a more pronounced activity than their corresponding acids, in which p-chlorocinnamate (3j) presented a LC50 value of 8.3 µg/mL. Thusly, external morphologic alterations (rigid and elongated body, curved bowel, and translucent or darkened anal papillae) of mosquitoes' group exposed to compound 3j, were observed by microscopy. In addition, an analytical method was developed for the quantification of the most promising analog by using high-performance liquid chromatography with UV detection (HPLC-UV). Molecular docking studies suggested that the larvicide action is associated with inhibition of acetylcholinesterase (AChE) enzyme. Therefore, expanding the larvicidal study with the cinnamic acid derivatives against the vector Ae. aegypti is important for finding search for more effective larvicides and with lower toxicity, since they have already shown good larvicidal properties against Ae. aegypti.


Asunto(s)
Aedes/efectos de los fármacos , Cinamatos/farmacología , Larva/efectos de los fármacos , Animales , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...