Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 305(4): 673-88, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11162084

RESUMEN

To determine the role of ppGpp in both negative and positive regulation of transcription initiation during exponential growth in Escherichia coli, we examined transcription in vivo and in vitro from the growth-rate-dependent rRNA promoter rrnB P1 and from the inversely growth-rate-dependent amino acid biosynthesis/transport promoters PargI, PhisG, PlysC, PpheA, PthrABC, and PlivJ. rrnB P1 promoter activity was slightly higher at all growth-rates in strains unable to synthesize ppGpp (deltarelAdeltaspoT) than in wild-type strains. Consistent with this observation and with the large decrease in rRNA transcription during the stringent response (when ppGpp levels are much higher), ppGpp inhibited transcription from rrnB P1 in vitro. In contrast, amino acid promoter activity was considerably lower in deltarelAdeltaspoT strains than in wild-type strains, but ppGpp had no effect on amino acid promoter activity in vitro. Detailed kinetic analysis in vitro indicated that open complexes at amino acid promoters formed much more slowly and were much longer-lived than rrnB P1 open complexes. ppGpp did not increase the rates of association with, or escape from, amino acid promoters in vitro, consistent with its failure to stimulate transcription directly. In contrast, ppGpp decreased the half-lives of open complexes at all promoters, whether the half-life was seconds (rrnB P1) or hours (amino acid promoters). The results described here and in the accompanying paper indicate that ppGpp directly inhibits transcription, but only from promoters like rrnB P1 that make short-lived open complexes. The results indicate that stimulation of amino acid promoters occurs indirectly. The accompanying paper evaluates potential models for positive control of amino acid promoters by ppGpp that might explain the requirement of ppGpp for amino acid prototrophy.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Transcripción Genética/genética , Aminoácidos/biosíntesis , Aminoácidos/genética , Secuencia de Bases , Secuencia de Consenso , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Genes de ARNr/genética , Guanosina Tetrafosfato/farmacología , Semivida , Cinética , Operón Lac/genética , Desnaturalización de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Especificidad por Sustrato , Transcripción Genética/efectos de los fármacos , Operón de ARNr/genética
2.
Proc Natl Acad Sci U S A ; 96(8): 4390-5, 1999 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-10200272

RESUMEN

Transcription factor UAF (upstream activation factor) is required for a high level of transcription, but not for basal transcription, of rDNA by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. RRN9 encodes one of the UAF subunits. We have found that rrn9 deletion mutants grow extremely slowly but give rise to faster growing variants that can grow without intact Pol I, synthesizing rRNA by using RNA polymerase II (Pol II). This change is reversible and does not involve a simple mutation. The two alternative states, one suitable for rDNA transcription by Pol I and the other favoring rDNA transcription by Pol II, are heritable not only in mitosis, but also in meiosis. Thus, S. cerevisiae has an inherent ability to transcribe rDNA by Pol II, but this transcription activity is silenced in normal cells, and UAF plays a key role in this silencing by stabilizing the first state.


Asunto(s)
ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cruzamientos Genéticos , Eliminación de Gen , Mutagénesis , Plásmidos , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Moldes Genéticos
3.
J Biol Chem ; 273(50): 33795-802, 1998 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-9837969

RESUMEN

Five purified protein components, RNA polymerase I, Rrn3p, core factor, TBP (TATA-binding protein), and upstream activation factor, are sufficient for high level transcription in vitro from the Saccharomyces cerevisiae rDNA promoter. Rrn3p and pol I form a complex in solution that is active in specific initiation. Three protein components, pol I, Rrn3p, and core factor, and promoter sequence to -38, suffice for basal transcription. Unlike pol II and pol III, yeast pol I basal transcription does not require TBP. Instead, TBP, upstream activation factor, and the upstream element of the promoter together stimulate pol I basal transcription to a fully activated level. The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , ADN Ribosómico/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , TATA Box , Proteína de Unión a TATA-Box
4.
Proc Natl Acad Sci U S A ; 92(4): 1117-21, 1995 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-7862645

RESUMEN

Escherichia coli uses at least two regulatory systems, stringent control and growth-rate-dependent control, to adjust rRNA output to amino acid availability and the steady-state growth rate, respectively. We examined transcription from rrnB P1 promoters containing or lacking the cis-acting UP element and FIS protein binding sites after amino acid starvation. The "core promoter" responds to amino acid starvation like the full-length wild-type promoter; thus, neither the UP element nor FIS plays a role in stringent control. To clarify the relationship between growth-rate-dependent regulation and stringent control, we measured transcription from growth-rate-independent promoters during amino acid starvation. Four rrnB P1 mutants defective for growth-rate control and two other growth-rate-independent promoters (rrnB P2 and pS10) still displayed stringent regulation. Thus, the two systems have different promoter determinants, consistent with the idea that they function by different mechanisms. Two mutations disrupted stringent control of rrnB P1: (i) a multiple base change in the "discriminator" region between the -10 hexamer and the transcription start site and (ii) a double substitution making the promoter resemble the E sigma 70 consensus promoter. These results have important implications for the mechanisms of both stringent control and growth-rate-dependent control of rRNA transcription.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Secuencia de Bases , División Celular/genética , ADN Bacteriano , Escherichia coli/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Transcripción Genética , Operón de ARNr
5.
J Biol Chem ; 268(31): 23477-82, 1993 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-8226874

RESUMEN

The rrnB P1 promoter of Escherichia coli (starting sequence C-4-A-3-C-2-C-1-A+1-C+2-U+3-G+4) forms a binary complex with RNA polymerase that is highly unstable and requires the presence of transcription substrates ATP and CTP for stabilizing the enzyme-DNA association (Gourse, R. L. (1988) Nucleic Acids Res. 16, 9789-9809). We show that in the absence of UTP and GTP the stabilization is accomplished by short RNA oligomers synthesized in an unusual "-3-->" mode whereby the primer initiated at the +1 site presumably slips back by three nucleotides into the -3 site and is then extended yielding stable ternary complexes. By contrast, short oligomers initiated in the conventional "+1-->" mode without slippage do not exert the stabilization effect and are readily aborted from the promoter complex. The stable -3-->ternary complexes carry sigma factor but otherwise resemble elongation complexes in their high salt stability and in the fact that they are formed with a mutant RNA polymerase deficient in promoter binding. A model is proposed explaining the stability of the -3-->ternary complexes by RNA slipping into a putative "tight RNA binding site" in RNA polymerase which is normally occupied by RNA during elongation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , ARN Ribosómico/genética , Transcripción Genética , Frío , Escherichia coli/genética , Técnicas In Vitro , Oligonucleótidos/metabolismo , Concentración Osmolar , Factor sigma/metabolismo , Moldes Genéticos
6.
Nucleic Acids Res ; 20(4): 719-26, 1992 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-1542568

RESUMEN

Transcription from the Escherichia coli rrnB P1 promoter is increased by a cis-acting sequence which extends upstream of the -35 hexamer to about -150 with respect to the transcription initiation site, the Upstream Activation Region (UAR). Activation by the UAR involves two components: (1) a trans-acting protein, Fis, which binds to three sites in the UAR between -60 and -150, and (2) the UAR sequences themselves which affect RNA polymerase (RNAP) activity independent of other proteins. We refer to the latter as Factor-Independent Activation (FIA). In addition to its interactions with the -10 and -35 hexamers typical of E. coli promoters, RNAP makes contacts to the -53 region of rrnB P1, which may be related to the FIA effect. We constructed a series of insertion mutants containing integral and non-integral numbers of helical turns at position -46, between the Fis binding sites and the -35 region, and the resulting promoter activities were measured in vitro and in vivo. The data suggest that both Fis-dependent and factor-independent activation are face of the helix dependent: the Fis binding site and the sequences responsible for factor-independent activation must be correctly oriented relative to RNA polymerase in order to activate transcription. These results, in conjunction with other evidence, support a model for the involvement of direct Fis-RNAP interactions in upstream activation. We also demonstrate that RNAP interacts with the -53 region of the rrnB P1 UAR even when these sequences are displaced upstream of the RNAP binding site, and that these interactions correlate with factor-independent activation.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli , Transcripción Genética/genética , Operón de ARNr/genética , Secuencia de Bases , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Factor Proteico para Inverción de Estimulación , Factores de Integración del Huésped , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética
7.
Biochim Biophys Acta ; 1050(1-3): 307-11, 1990 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-2119814

RESUMEN

Transcription from Escherichia coli ribosomal RNA promoters is increased about 20-fold in vivo by a DNA sequence (the Upstream Activation Region, UAR) located upstream of the -35 conserved hexamer. The UAR stimulates transcription through two mechanisms: one which involves binding of the Fis protein to the UAR, and another mechanisms which functions in the absence of additional protein factors. We have previously constructed a collection of mutations in the region upstream of the -35 hexamer of rrnB P1. Most of these mutations have either no effect on promoter activity or decrease activity 2-5-fold in vivo (Gaal, T., Barkei, J., Dickson, R.R., De Boer, H.A., De Haseth, P.L., Alavi, H. and Gourse, R.L.(1989) J. Bacteriol. 171, 4852-4861). Two mutations leave both the -35 consensus hexamer and the Fis binding consensus sequence intact, yet have larger (14-50-fold) effects on transcription. One substitution just upstream of the -35 hexamer (a C to T change at position -37) primarily affects intrinsic promoter strength, leaving the UAR functional. On the other hand, a three base pair deletion (bases -38 through -40) severely reduces UAR-mediated activity. A substitution covering the three base pair deletion was constructed and found to be activated normally. UAR function appears dependent on its position relative to the RNA polymerase binding site, suggesting that a particular spatial geometry may be necessary for Fis-dependent and/or factor-independent activation to occur.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Transcripción Genética , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor Proteico para Inverción de Estimulación , Factores de Integración del Huésped , Datos de Secuencia Molecular , Mutación , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA