Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-449905

RESUMEN

The recent COVID-19 pandemic is a treatment challenge in the acute infection stage but the recognition of chronic COVID-19 symptoms termed post-acute sequelae SARS-CoV-2 infection (PASC) may affect up to 30% of all infected individuals. The underlying mechanism and source of this distinct immunologic condition three months or more after initial infection remains elusive. Here, we investigated the presence of SARS-CoV-2 S1 protein in 46 individuals. We analyzed T-cell, B-cell, and monocytic subsets in both severe COVID-19 patients and in patients with post-acute sequelae of COVID-19 (PASC). The levels of both intermediate (CD14+, CD16+) and non-classical monocyte (CD14Lo, CD16+) were significantly elevated in PASC patients up to 15 months post-acute infection compared to healthy controls (P=0.002 and P=0.01, respectively). A statistically significant number of non-classical monocytes contained SARS-CoV-2 S1 protein in both severe (P=0.004) and PASC patients (P=0.02) out to 15 months post-infection. Non-classical monocytes were sorted from PASC patients using flow cytometric sorting and the SARS-CoV-2 S1 protein was confirmed by mass spectrometry. Cells from 4 out of 11 severe COVID-19 patients and 1 out of 26 PASC patients contained ddPCR+ peripheral blood mononuclear cells, however, only fragmented SARS-CoV-2 RNA was found in PASC patients. No full length sequences were identified, and no sequences that could account for the observed S1 protein were identified in any patient. Non-classical monocytes are capable of causing inflammation throughout the body in response to fractalkine/CX3CL1 and RANTES/CCR5.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-423122

RESUMEN

Individuals with systemic symptoms long after COVID-19 has cleared represent approximately ~10% of all COVID-19 infected individuals. Here we present a bioinformatics approach to predict and model the phases of COVID so that effective treatment strategies can be devised and monitored. We investigated 144 individuals including normal individuals and patients spanning the COVID-19 disease continuum. We collected plasma and isolated PBMCs from 29 normal individuals, 26 individuals with mild-moderate COVID-19, 25 individuals with severe COVID-19, and 64 individuals with Chronic COVID-19 symptoms. Immune subset profiling and a 14-plex cytokine panel were run on all patients. Data was analyzed using machine learning methods to predict and distinguish the groups from each other.Using a multi-class deep neural network classifier to better fit our prediction model, we recapitulated a 100% precision, 100% recall and F1 score of 1 on the test set. Moreover, a first score specific for the chronic COVID-19 patients was defined as S1 = (IFN-{gamma} + IL-2)/ CCL4-MIP-1{beta}. Second, a score specific for the severe COVID-19 patients was defined as S2 = (10*IL-10 + IL-6) - (IL-2 + IL-8). Severe cases are characterized by excessive inflammation and dysregulated T cell activation, recruitment, and counteracting activities. While chronic patients are characterized by a profile able to induce the activation of effector T cells with pro-inflammatory properties and the capacity of generating an effective immune response to eliminate the virus but without the proper recruitment signals to attract activated T cells. SummaryImmunologic Modeling of Severity and Chronicity of COVID-19

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...