Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(3): 960-974, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402527

RESUMEN

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Asunto(s)
Pinus , Resiliencia Psicológica , Ecosistema , Rizosfera , Resistencia a la Sequía , Suelo , Bosques , Carbono/metabolismo , Árboles/fisiología , Sequías , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Pinus/metabolismo , Microbiología del Suelo
2.
Environ Sci Pollut Res Int ; 30(13): 38443-38464, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580240

RESUMEN

More than half of the CO2 emissions during the manufacturing of ordinary Portland cement (OPC) occur due to the calcination of calcium carbonate in addition to burning of fossil fuel to power the process. Consequently, there is a concerted effort to decrease the carbon footprint associated with this process, by minimizing the use of OPC. In line with this trend, an attempt was made in the reported study to synthesize a novel alkali-activated binder using CaCO3-rich waste limestone powder (WLSP) as a precursor. Utilizing the Taguchi method, four important parameters were varied at three levels to optimize the alkali-activated mixture. Analysis of variance (ANOVA) of the obtained results was performed to assess the impact of each of the factors on the properties of the developed binder. To enhance the strength further, OPC was added as a partial replacement of WLSP. The binder was characterized using scanning electron microscopy. The results have indicated that alkaline activator to binder ratio, Na2SiO3 to NaOH ratio, and sand to binder ratio of 0.575, 1.57, and 2.5, respectively, were the optimum to obtain satisfactory strength and workability with a 13.7-M NaOH activator solution. The incorporation of a small quantity of OPC in the mixture remarkably improved the density and strength of the alkali-activated-WLSP binder. Pirssonite (CaCO3.Na2CO3.2H2O) and C/N-A-S-H were the dominant mineral phases formed in the developed binder, particularly in the ones alkali-activated WLSP/OPC. In addition, the eco-efficiency assessment revealed that the WLSP is a promising low-carbon binder that can be used in developing more sustainable alkali-activated binder. The results have shown that the WLSP can be potentially utilized in developing binder that can be potentially used in the structural applications.


Asunto(s)
Álcalis , Carbonato de Calcio , Análisis de Varianza , Polvos , Hidróxido de Sodio
3.
Glob Chang Biol ; 27(11): 2491-2506, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33739617

RESUMEN

Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse-labelled 100-year-old trees with 13 CO2 within a 15-year-long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13 C-labelled assimilates were allocated to the rhizosphere. One year later, the 13 C signal of the 3-h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil-respired 13 CO2 around the 10 pulse-labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long-term acclimation of trees and their rhizosphere to the drought regime. The moisture-sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.


Asunto(s)
Sequías , Árboles , Carbono , Dióxido de Carbono , Huella de Carbono , Ecosistema , Bosques , Suelo
4.
Tree Physiol ; 41(6): 927-943, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33147631

RESUMEN

Research on drought impact on tree functioning is focussed primarily on water and carbon (C) dynamics. Changes in nutrient uptake might also affect tree performance under drought and there is a need to explore underlying mechanisms. We investigated effects of drought on (a) in situ nitrogen (N) uptake, accounting for both, N availability to fine roots in soil and actual N uptake, (b) physiological N uptake capacity of roots and (c) the availability of new assimilates to fine roots influencing the N uptake capacity using 15N and 13C labelling. We assessed saplings of six different tree species (Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl., Abies alba Mill., Picea abies (L.) H.Karst. and Pinus sylvestris L.). Drought resulted in significant reduction of in situ soil N uptake in deciduous trees accompanied by reduced C allocation to roots and by a reduction in root biomass available for N uptake. Although physiological root N uptake capacity was not affected by drought in deciduous saplings, reduced maximum ammonium but not nitrate uptake was observed for A. alba and P. abies. Our results indicate that drought has species-specific effects on N uptake. Even water limitations of only 5 weeks as assessed here can decrease whole-plant inorganic N uptake, independent of whether the physiological N uptake capacity is affected or not.


Asunto(s)
Fagus , Árboles , Carbono , Sequías , Nitrógeno/análisis , Raíces de Plantas/química , Suelo
5.
Tree Physiol ; 41(1): 50-62, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879961

RESUMEN

The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.) branches and detached twigs of hemiparasitic mistletoes (Viscum album ssp. austriacum) in a naturally dry coniferous forest, where also a long-term irrigation takes place. After 4 h of label exposure, we sampled previous- and recent-year leaves, twig phloem and twig xylem over 192 h for the analysis of isotope ratios in water and assimilates. For both species, the uptake into leaf water and the incorporation of the 18O-label into leaf assimilates was not influenced by soil moisture, while the 13C-label incorporation into assimilates was significantly higher under irrigation compared with control dry conditions. Species-specific differences in leaf morphology or needle age did not affect 18O-label uptake into leaf water, but the incorporation of both tracers into assimilates was two times lower in mistletoe than in pine. The 18O-label allocation in water from pine needles to twig tissues was two times higher for phloem than for xylem under both soil moisture conditions. In contrast, the allocation of both tracers in pine assimilates were similar and not affected by soil moisture, twig tissue or needle age. Soil moisture effects on 13C-label but not on 18O-label incorporation into assimilates can be explained by the stomatal responses at high humidity, non-stomatal pathways for water and isotope exchange reactions. Our results suggest that non-photosynthetic 18O-incorporation processes may have masked prevalent photosynthetic processes. Thus, isotopic variation in leaf water could also be imprinted on assimilates when photosynthetic assimilation rates are low.


Asunto(s)
Carbono , Tracheophyta , Isótopos de Carbono/análisis , Bosques , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Suelo , Agua
6.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958662

RESUMEN

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Asunto(s)
Carbono/metabolismo , Pinus sylvestris/metabolismo , Suelo/química , Árboles/metabolismo , Carbono/análisis , Cambio Climático , Sequías , Ecosistema , Bosques , Pinus sylvestris/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Árboles/crecimiento & desarrollo , Agua/análisis , Agua/metabolismo
8.
Nat Plants ; 2: 16111, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27428669

RESUMEN

Climate projections predict higher precipitation variability with more frequent dry extremes(1). CO2 assimilation of forests decreases during drought, either by stomatal closure(2) or by direct environmental control of sink tissue activities(3). Ultimately, drought effects on forests depend on the ability of forests to recover, but the mechanisms controlling ecosystem resilience are uncertain(4). Here, we have investigated the effects of drought and drought release on the carbon balances in beech trees by combining CO2 flux measurements, metabolomics and (13)CO2 pulse labelling. During drought, net photosynthesis (AN), soil respiration (RS) and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, RS recovered faster than AN and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought. We propose that root restoration plays a key role in ecosystem resilience to drought, in that the increased sink activity controls the recovery of carbon balances.


Asunto(s)
Ciclo del Carbono , Sequías , Fagus/fisiología , Suelo/química , Árboles/fisiología
9.
Afr J Paediatr Surg ; 13(1): 44-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27251524

RESUMEN

Necrotising fasciitis (NF) is an extremely rare complication of a rather common paediatric viral exanthem varicella. Delayed diagnosis and treatment can lead to significant morbidity and mortality. Laboratory risk indicator of NF score aids in early clinical diagnosis in suspected cases of post-varicella NF thus enabling timely intervention. Surgery delayed for more than 24 hours, is an independent risk factor for death. Surgical debridement with good antibiotic coverage is the definitive treatment for NF.


Asunto(s)
Varicela/complicaciones , Fascitis Necrotizante/diagnóstico , Fascitis Necrotizante/cirugía , Antibacterianos/uso terapéutico , Celulitis (Flemón)/diagnóstico , Celulitis (Flemón)/etiología , Celulitis (Flemón)/terapia , Preescolar , Desbridamiento , Diagnóstico Precoz , Fascitis Necrotizante/tratamiento farmacológico , Fascitis Necrotizante/etiología , Humanos , Masculino , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...