Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Eng Au ; 3(6): 461-476, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144680

RESUMEN

Two-dimensional (2D) nanomaterial-MoS2 (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS2 nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m2/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS2 nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS2 dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS2 exceeds four regeneration recycles. MoS2 nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.

2.
ACS Omega ; 8(32): 29674-29684, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599955

RESUMEN

Graphene oxide (GO) is a conventional yet vital precursor for the synthesis of porous graphene (PG). Several strong oxidizing agents such as potassium permanganate and perchlorates are typically used for oxidization of graphite. However, they expose toxic reactants/products that harm the environment. Therefore, a greener approach is desperately needed to oxidize and exfoliate graphite. This study reports for the first time on successful oxidation of graphite by ferrate(VI) compounds via an encapsulation approach. By further reducing GO prepared from this near green route with vitamin C, PG anticipated by many highly important and expanding areas such as water treatment could be readily achieved. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-vis spectroscopy, and scanning electronic microscopy (SEM) along with energy-dispersive spectroscopy confirmed the high yield of GO from the oxidation of graphite. Raman spectroscopy, XRD, and TEM confirmed the formation of high-quality few-layered PG from the reduction of as-prepared GO. The above results demonstrated the practicality of using encapsulated ferrate(VI) compounds to realize green oxidation of graphite and resolve the paradox about the oxidation capability of ferrate(VI). To further illustrate its potential for the removal of emerging and crucial contaminants from water, as-prepared PG was further examined against the contaminants of methyl orange (MeO) dye and ibuprofen (IBU). Taken together, the results revealed that more than 90% removal efficiency could be achieved at a high PG dosage against MeO and IBU. This ground-breaking greener approach opens the door to risk-free, extensive graphene environmental applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...