Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biochimie ; 223: 98-115, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735570

RESUMEN

Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known. Hence, our present study aimed to understand influence of DNA methylation on exosome proteome composition and their influence on endothelial cell (EC) function. DNMT isoforms (DNMT1, DNMT3A, and DNMT3B) were overexpressed using lentivirus in ECs. Exosomes were isolated and characterized from ECs overexpressing DNMT isoforms and C57BL/6 mice plasma treated with 5-aza-2'-deoxycytidine. 3D spheroid assay was performed to understand the influence of exosomes derived from cells overexpressing DNMTs on EC functions. Further, the exosomes were subjected to TMT labelled proteomics analysis followed by validation. 3D spheroid assay showed increase in the pro-angiogenic activity in response to exosomes derived from DNMT overexpressing cells which was impeded by inclusion of 5-aza-2'-deoxycytidine. Our results showed that exosome proteome and PTMs were significantly modulated and were associated with dysregulation of vascular homeostasis, metabolism, inflammation and endothelial cell functions. In vitro and in vivo validation showed elevated DNMT1 and TGF-ß1 exosome proteins due to DNMT1 and DNMT3A overexpression, but not DNMT3B which was mitigated by 5-aza-2'-deoxycytidine indicating epigenetic regulation. Further, exosomes induced ED as evidenced by reduced expression of phospho-eNOSser1177. Our study unveils epigenetically regulated exosome proteins, aiding management of vascular complications.

2.
iScience ; 27(6): 109899, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799569

RESUMEN

The emergence of multidrug resistance in cancer cells necessitates the development of new therapeutic modalities. One way cancer cells orchestrate energy metabolism and redox homeostasis is through overloaded iron pools directed by iron regulatory proteins, including transferrin. Here, we demonstrate that targeting redox homeostasis using nitrogen-based heterocyclic iron chelators and their iron complexes efficiently prevents the proliferation of liver cancer cells (EC50: 340 nM for IITK4003) and liver cancer 3D spheroids. These iron complexes generate highly reactive Fe(IV)=O species and accumulate lipid peroxides to promote oxidative stress in cells that impair mitochondrial function. Subsequent leakage of mitochondrial cytochrome c activates the caspase cascade to trigger the intrinsic apoptosis pathway in cancer cells. This strategy could be applied to leverage the inherent iron overload in cancer cells to selectively promote intrinsic cellular apoptosis for the development of unique iron-complex-based anticancer therapeutics.

3.
Int Immunopharmacol ; 132: 111950, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579564

RESUMEN

Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions. Hence, we examined mass spectrometry based post-translational modifications (PTM) of neutrophil proteins in response to pathologically significant stimuli, including high glucose, homocysteine and bacterial lipopolysaccharides representing diabetes-indicator, an activator of thrombosis and pathogen-associated molecule, respectively. Our data revealed that these aforesaid stimulators differentially deamidate, citrullinate, acetylate and methylate neutrophil proteins and align to distinct biological functions associated with degranulation, platelet activation, innate immune responses and metabolic alterations. The PTM patterns in response to high glucose showed an association with neutrophils extracellular traps (NETs) formation, homocysteine induced proteins PTM associated with signaling of systemic lupus erythematosus and lipopolysaccharides induced PTMs were involved in pathways related to cardiomyopathies. Our study provides novel insights into neutrophil PTM patterns and functions in response to varied pathological stimuli, which may serve as a resource to design therapeutic strategies for the management of neutrophil-centred diseases.


Asunto(s)
Trampas Extracelulares , Homocisteína , Lipopolisacáridos , Neutrófilos , Procesamiento Proteico-Postraduccional , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Homocisteína/metabolismo , Glucosa/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Inmunidad Innata , Cardiomiopatías/inmunología , Cardiomiopatías/metabolismo , Transducción de Señal
4.
Biochimie ; 216: 71-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37758157

RESUMEN

Senescence due to exogenous and endogenous stresses triggers metabolic reprogramming and is associated with many pathologies, including cancer. In solid tumors, senescence promotes tumorigenesis, facilitates relapse, and changes the outcomes of anti-cancer therapies. Hence, cellular and molecular mechanisms regulating senescent pathways make attractive therapeutic targets. Cancer cells undergo metabolic reprogramming to sustain the growth-arrested state of senescence. In the present study, we aimed to understand the metabolic reprogramming in MCF-7 breast tumor cells in response to two independent inducers of DNA damage-mediated senescence, including ionizing radiation and doxorubicin. Increased DNA double-strand breaks, as demonstrated by γH2AX staining, showed a senescence phenotype, with expression of senescence-associated ß-galactosidase accompanied by the upregulation of p21 and p16 in both groups. Further, untargeted analysis of the senescence-related extracellular metabolome profile of MCF-7 cells showed significantly reduced concentrations of carnitine and pantothenic acid and increased levels of S-adenosylhomocysteine in doxorubicin-treated cells, indicating the accumulation of ROS mediated DNA damage and impaired mitochondrial membrane potential. Similarly, a significant decline in the creatine level was observed in radiation-exposed cells, suggesting an increase in oxidative stress-mediated DNA damage. Our study, therefore, provides key effectors of the metabolic changes in doxorubicin and radiation-induced early senescence in MCF-7 breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Daño del ADN , Células MCF-7 , Senescencia Celular/genética
5.
Int Rev Cell Mol Biol ; 380: 63-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37657860

RESUMEN

Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis. Hence, understanding DNA methylation-based regulation of angiogenesis in breast tumors may open new avenues for designing therapeutic targets. Our present review manuscript summarized contemporary knowledge of influence of DNA methylation in regulating angiogenesis. Further, we identified novel set of pro-angiogenic genes enriched in endothelial cells which are coregulated with DNMT isoforms in breast tumors and harboring CpG islands. Our analysis revealed promoters of pro-angiogenic genes were hypomethylated and anti-angiogenic genes were hypermethylated in tumors and further reflected on their expression patterns. Interestingly, promoter DNA methylation intensities of novel set of pro-angiogenic genes significantly correlated to patient survival outcome.


Asunto(s)
Neoplasias de la Mama , Metilación de ADN , Humanos , Femenino , Metilación de ADN/genética , Células Endoteliales , Epigénesis Genética , Inmunoterapia , Neoplasias de la Mama/genética
6.
Inflamm Res ; 72(6): 1175-1192, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37212866

RESUMEN

INTRODUCTION: Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY: We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS: Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION: Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.


Asunto(s)
Inflamación , Neutrófilos , Humanos , Transducción de Señal , Homeostasis
7.
Environ Sci Pollut Res Int ; 30(23): 64025-64035, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060405

RESUMEN

Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/inducido químicamente , Cromatografía Liquida , Espectrometría de Masas en Tándem , Plasma
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166718, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060964

RESUMEN

Adaptability to intracellular or extracellular cues is essential for maintaining cellular homeostasis. Metabolic signals intricately control the morphology and functions of mitochondria by regulating bioenergetics and metabolism. Here, we describe the involvement of PHLPP1, a Ser/Thr phosphatase, in mitochondrial homeostasis. Microscopic analysis showed the enhanced globular structure of mitochondria in PHLPP1-depleted HEK 293T and C2C12 cells, while forced expression of PHLPP1 promoted mitochondrial tubularity. We show that PHLPP1 promoted pro-fusion markers MFN2 and p-DRP1Ser637 levels using over-expression and knockdown strategies. Contrastingly, PHLPP1 induced mitochondrial fragmentation by augmenting pro-fission markers, t-DRP1 and pDrp1Ser616 upon mitochondrial stress. At the molecular level, PHLPP1 interacted with and caused dephosphorylation of calcineurin, a p-DRP1Ser637 phosphatase, under basal conditions. Likewise, PHLPP1 dimerized with PINK1 under basal conditions. However, the interaction of PHLPP1 with both calcineurin and PINK1 was impaired upon CCCP and oligomycin-induced mitochondrial stress. Interestingly, upon mitochondrial membrane depolarization, PHLPP1 promoted PINK1 stabilization and parkin recruitment to mitochondria, and thereby activated the mitophagy machinery providing a molecular explanation for the dual effects of PHLPP1 on mitochondria under different conditions. Consistent with our in-vitro findings, depletion of phlp-2, ortholog of PHLPP1 in C. elegans, led to mitochondrial fission under basal conditions, extended the lifespan of the worms, and enhanced survival of worms subjected to paraquat-induced oxidative stress.


Asunto(s)
Longevidad , Proteínas Quinasas , Animales , Caenorhabditis elegans/metabolismo , Calcineurina , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Ratones
9.
Hum Cell ; 36(4): 1265-1282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37115481

RESUMEN

Metabolic and inflammatory pathways are highly interdependent, and both systems are dysregulated in Type 2 diabetes (T2D). T2D is associated with pre-activated inflammatory signaling networks, aberrant cytokine production and increased acute phase reactants which leads to a pro-inflammatory 'feed forward loop'. Nutrient 'excess' conditions in T2D with hyperglycemia, elevated lipids and branched-chain amino acids significantly alter the functions of immune cells including neutrophils. Neutrophils are metabolically active cells and utilizes energy from glycolysis, stored glycogen and ß-oxidation while depending on the pentose phosphate pathway for NADPH for performing effector functions such as chemotaxis, phagocytosis and forming extracellular traps. Metabolic changes in T2D result in constitutive activation and impeded acquisition of effector or regulatory activities of neutrophils and render T2D subjects for recurrent infections. Increased flux through the polyol and hexosamine pathways, elevated production of advanced glycation end products (AGEs), and activation of protein kinase C isoforms lead to (a) an enhancement in superoxide generation; (b) the stimulation of inflammatory pathways and subsequently to (c) abnormal host responses. Neutrophil dysfunction diminishes the effectiveness of wound healing, successful tissue regeneration and immune surveillance against offending pathogens. Hence, Metabolic reprogramming in neutrophils determines frequency, severity and duration of infections in T2D. The present review discusses the influence of the altered immuno-metabolic axis on neutrophil dysfunction along with challenges and therapeutic opportunities for clinical management of T2D-associated infections.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Neutrófilos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucólisis , Oxidación-Reducción
10.
Methods Mol Biol ; 2625: 71-78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653633

RESUMEN

Lipidomics is a branch of omics biology that enables the characterization and determination of different lipid classes. Mass spectrometry is a widely used tool to identify and obtain qualitative and quantitative measurements of the range of lipid species in various cell/tissue types. Human retina is highly rich in different classes of lipids that are liable to undergo modification such as oxidation, isomerization, peroxidation, and hydroxylation due to continuous metabolic activity in response to light photons. Alterations in lipid metabolism are associated with retinal diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. However, a clear understanding on the type of lipids/alterations involved in these diseases is not established yet. The unavailability of suitable biological retinal tissue need for this research has prompted us to explore vitreous humor and tear film for studying lipidomic alterations in different ocular diseases. Subjecting the lipid extract to tandem mass spectrometry further gives qualitative and quantitative lipidome of the diseased tissue. While the mass spectrometry approaches for lipid profiling have been adequately described, the present chapter focusses on a simplified protocol for extracting sufficient lipids/metabolites from vitreous humor and tear samples obtained from patients and their subsequent mass spectrometry analysis.


Asunto(s)
Retinopatía Diabética , Enfermedades de la Retina , Recién Nacido , Humanos , Lípidos/química , Espectrometría de Masas en Tándem/métodos , Retina/química
11.
Metabolites ; 13(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36677006

RESUMEN

The exposure to blue and white Light emitting diodes (LED) light leads to damage in the visual system with short-term LED light exposure. Chronic exposure, adaptive responses to light, and self-protective mechanisms against LED light exposures need to be explored, and it would be essential to understand the repercussions of LED radiation on vitreous metabolites. A total of 24 male Wistar rats were used in this study, divided into four groups (n = 6 in each group). Three experimental groups of rats were exposed to either blue, white, or yellow LED light for 90 days (12:12 light-dark cycle routine) with uniform illumination (450−500 lux). Standard lab settings were used to maintain control rats. Vitreous fluids were subjected to untargeted metabolomics analysis using liquid chromatography-mass spectrometry (LC/MS). PLS-DA analysis indicated significant the separation of m metabolites among groups, suggesting that LED exposure induces metabolic reprogramming in the vitreous. Amino acids and their modifications showed significant alterations among groups which included D-alanine, D-serine (p < 0.05), lysine (p < 0.001), aspartate (p = 0.0068), glutathione (p = 0.0263), taurine (p = 0.007), and hypotaurine. In chronic light exposure, the self-protective or reworking system could be depleted, which may decrease the ability to compensate for the defending mechanism. This might fail to maintain the metabolomic structural integrity of the vitreous metabolites.

12.
J Ayurveda Integr Med ; 14(2): 100598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35973910

RESUMEN

BACKGROUND: Metal toxicity is of major concern to human health. The metals may modulate molecular mechanisms of various pathways. Rasashastra, the branch of Ayurveda, narrates the properties, unique preparation, processing techniques, and therapeutic uses of minerals. The use of herbal metallic preparations has evoked concern for their potential to produce toxicity, interest in efficacy as therapeutic agents and safety related issues. Abhraka Bhasma, is one such incinerated herbo-metallic preparation of mica, widely used by traditional medicine practitioners. Although there are reports of Abhraka Bhasma on beneficial effects, clear evidence is lacking on the effect of Abhraka Bhasma on genotoxicity and DNA repair. OBJECTIVE: The present study aims to understand the effects of Abhraka Bhasma on geno toxicity, DNA repair, and other mechanisms in the mice test model. MATERIAL AND METHODS: The experiments were conducted in in vivo Swiss albino mice. The acute oral toxicity was performed as per the OECD guidelines. The mice were treated with Abhraka Bhasma (120 or 360 mg/kg body weight) for 7 days. They were then challenged with ethyl methanesulfonate and the DNA repair was analyzed. RESULTS: The data obtained indicated that the Abhraka Bhasma is not a genotoxic and reproductive toxic formulation. The selected higher concentration of Abhraka Bhasma showed a protective role against ethyl methanesulfonate induced chromosomal damages and enhanced constitutive DNA base excision repair in mice. CONCLUSION: The anti-oxidant, potentiation of DNA repair and hematinic properties of Abhraka Bhasma may be attributed to the synergistic actions of its bioactive components.

13.
Neurotox Res ; 40(5): 1539-1552, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35781222

RESUMEN

Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.


Asunto(s)
Enfermedades Neurodegenerativas , Plaguicidas , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Dopamina , Ácidos Grasos , Glutatión/metabolismo , Humanos , Metaboloma , Enfermedades Neurodegenerativas/inducido químicamente , Plaguicidas/toxicidad , Triptófano/metabolismo
14.
Front Plant Sci ; 13: 917770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774803

RESUMEN

Ashwagandha (Withania somnifera L. Dunal) is a medicinally important plant with withanolides as its major bioactive compounds, abundant in the roots and leaves. We examined the influence of plant growth regulators (PGRs) on direct organogenesis, adventitious root development, withanolide biosynthetic pathway gene expression, withanolide contents, and metabolites during vegetative and reproductive growth phases under in vitro and ex vitro conditions. The highest shooting responses were observed with 6-benzylaminopurine (BAP) (2.0 mg L-1) + Kinetin (KIN) (1.5 mg L-1) supplementation. Furthermore, BAP (2.0 mg L-1) + KIN (1.5 mg L-1) + gibberellic acid (GA3) (0.5 mg L-1) exhibited better elongation responses with in vitro flowering. Half-strength MS medium with indole-3-butyric acid (IBA) (1.5 mg L-1) exhibited the highest rooting responses and IBA (1.0 mg L-1) with highest fruits, and overall biomass. Higher contents of withaferin A (WFA) [∼8.2 mg g-1 dry weight (DW)] were detected in the reproductive phase, whereas substantially lower WFA contents (∼1.10 mg g-1 DW) were detected in the vegetative phase. Cycloartenol synthase (CAS) (P = 0.0025), sterol methyltransferase (SMT) (P = 0.0059), and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) (P = 0.0375) genes resulted in a significant fold change in expression during the reproductive phase. The liquid chromatography-mass spectrometry (LC-MS) analysis revealed metabolites that were common (177) and distinct in reproductive (218) and vegetative (167) phases. Adventitious roots cultured using varying concentrations of indole-3-acetic acid (IAA) (0.5 mg L-1) + IBA (1.0 mg L-1) + GA3 (0.2 mg L-1) exhibited the highest biomass, and IAA (0.5 mg L-1) + IBA (1.0 mg L-1) exhibited the highest withanolides content. Overall, our findings demonstrate the peculiarity of withanolide biosynthesis during distinct growth phases, which is relevant for the large-scale production of withanolides.

15.
Drug Discov Today ; 27(10): 103317, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35835313

RESUMEN

That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways. Adipocyte-specific loss of PHLPP2 reduces adiposity, improves glucose tolerance,and attenuates fatty liver via the PHLPP2-HSL-PPARα axis. Discoveries of PHLPP1-mediated insulin resistance and pancreatic ß cell death via the PHLPP1/2-Mst1-mTORC1 triangular loop have shed light on its significance in diabetology. PHLPP1 downregulation attenuates diabetic cardiomyopathy (DCM) by restoring PI3K-Akt-mTOR signalling. In this review, we summarise the functional role of, and cellular signalling mediated by, PHLPPs in metabolic tissues and discuss their potential as therapeutic targets.


Asunto(s)
Resistencia a la Insulina , Fosfoproteínas Fosfatasas , Proteínas Quinasas Activadas por AMP , Glucosa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Nucleares/metabolismo , PPAR alfa , Fosfatidilinositol 3-Quinasas , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR
16.
Metabolomics ; 18(7): 45, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35763080

RESUMEN

Type 2 diabetes (T2D) associated health disparities among different ethnicities have long been known. Ethnic variations also exist in T2D related comorbidities including insulin resistance, vascular complications and drug response. Genetic heterogeneity, dietary patterns, nutrient metabolism and gut microbiome composition attribute to ethnic disparities in both manifestation and progression of T2D. These factors differentially regulate the rate of metabolism and metabolic health. Metabolomics studies have indicated significant differences in carbohydrate, lipid and amino acid metabolism among ethnicities. Interestingly, genetic variations regulating lipid and amino acid metabolism might also contribute to inter-ethnic differences in T2D. Comprehensive and comparative metabolomics analysis between ethnicities might help to design personalized dietary regimen and newer therapeutic strategies. In the present review, we explore population based metabolomics data to identify inter-ethnic differences in metabolites and discuss how (a) genetic variations, (b) dietary patterns and (c) microbiome composition may attribute for such differences in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Aminoácidos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Lípidos , Metabolómica
17.
Cell Tissue Res ; 389(2): 241-257, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35622142

RESUMEN

Neutrophils display functional heterogeneity upon responding diversely to physiological and pathological stimulations. During type 2 diabetes (T2D), hyperglycemia constitutively activates neutrophils, leading to reduced response to infections and on the other hand, elevated metabolic intermediates such as homocysteine induce bidirectional activation of platelets and neutrophils leading to thrombosis. Hence, in the context of T2D-associated complications, we examined the influence of high glucose, homocysteine, and LPS representing effector molecules of hyperglycemia, thrombosis, and infection, respectively, on human neutrophil activation to identify distinct signaling pathways by quantitative phosphoproteomics approach. High glucose activated C-Jun-N-Terminal Kinase, NTRK1, SYK, and PRKACA kinases associated with Rho GTPase signaling and phagocytosis, whereas LPS induced AKT1, SRPK2, CSNK2A1, and TTN kinases involved in cytokine signaling and inflammatory response. Homocysteine treatment led to activatation of  LRRK2, FGR, MAPK3, and PRKCD kinases which are associated with neutrophil degranulation and cytoskeletal remodeling. Diverse inducers differentially modulated phosphorylation of proteins associated with neutrophil functions such as oxidative burst, degranulation, extracellular traps, and phagocytosis. Further validation of phosphoproteomics data on selected kinases revealed neutrophils pre-cultured under high glucose showed impeded response to LPS to phosphorylate p-ERK1/2Thr202/Tyr204, p-AKTSer473, and C-Jun-N-Terminal KinaseSer63 kinases. Our study provides novel phosphoproteome signatures that may be explored to understand neutrophil biology in T2D-associated complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Glucosa/metabolismo , Homocisteína/metabolismo , Humanos , Hiperglucemia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Activación Neutrófila , Neutrófilos/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal
18.
Life Sci ; 298: 120490, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35331720

RESUMEN

Endothelial cells lining the vessel wall regulate thrombosis, inflammation, angiogenesis and balance between vasoconstriction and vasodilatory functions. Subjects with Type 2 diabetes (T2D) accrue a multitude of vasculopathies causing high morbidity and mortality across the globe. High glucose and its modified products such as advanced glycation end products lead to a bidirectional activation of inflammatory and epigenetic machinery in endothelial cells resulting in a state of chronic inflammatory milieu and eventually into vascular complications. Clinical and experimental studies have shown that despite the therapeutic normalization of glucose levels, subjects with T2D overt to vascular complications through a process of metabolic memory which is associated with significant epigenetic reprogramming in endothelial cells. In normal physiological conditions, vascular endothelial cells display a quiescent state and only in response to either physiological or pathological response, endothelial cells undergo proliferation. During the pathogenesis of T2D, DNA methylation, histone marks and non-coding RNAs forming the epigenetic landscape are dysregulated and activate quiescent endothelial cells to switch on a diverse set of molecular activities and lead to endothelial dysfunction. In the present review, we provide a comprehensive overview of how hyperglycemia in T2D reprograms endothelial epigenome and lead to functional consequences in the pathogenesis of vascular complications. Further, we catalogue and discuss epi-drugs that may ameliorate endothelial functions during T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Cardiovasculares/genética , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Células Endoteliales , Epigénesis Genética , Glucosa , Humanos , Inflamación/genética
19.
Life (Basel) ; 12(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35207530

RESUMEN

Blue light exposure-induced retinal damage has been extensively studied. Although many in vitro studies have shown the benefits of blue light-blocking lenses (BBL) there have been few comprehensive in vivo studies to assess the effects of BBL. We investigated the influence of blue light exposure using light-emitting diodes on retinal histology and visual cortex neurons in rodents. We also considered whether retinal and cortical changes induced by blue light could be ameliorated with blue light-blocking lenses. A total of n = 24 (n = 6 in each group; control, light exposure without lenses, two different BBLs)) male Wistar rats were subjected to blue light exposure (LEDs, 450-500 lux) without or with BBLs (400-490 nm) for 28 days on a 12:12 h light-dark cycle. Histological analysis of retinae revealed apoptosis and necrosis of the retinal pigment epithelium (RPE), photoreceptors, and inner retina in the light exposure (LE) group, along with increase caspase-3 immunostaining in the ganglion cell layer (p < 0.001). BBL groups showed less caspase-3 immunostaining compared with the LE group (p < 0.001). V1-L5PNs (primary visual cortex layer 5 pyramidal neurons) demonstrated reduced branching and intersections points for apical (p < 0.001) and basal (p < 0.05) dendrites following blue light exposure. Blue light-blocking lenses significantly improved the number of basal branching points compared with the LE group. Our study shows that prolonged exposure to high levels of blue light pose a significant hazard to the visual system resulting in damage to the retina with the associated remodeling of visual cortex neurons. BBL may offer moderate protection against exposure to high levels of blue light.

20.
iScience ; 25(2): 103766, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141506

RESUMEN

Infiltration of arterial intima by foamy macrophages is a hallmark of early atherosclerotic lesions. Here, we investigated the potential role of Ser/Thr phosphatase PHLPP1 in foam cell development. PHLPP1 levels were elevated in OxLDL-exposed macrophages and high-fat diet (HFD)-fed zebrafish larvae. Using overexpression and knockdown approaches, we show that PHLPP1 promotes the accumulation of neutral lipids, and augments cellular total cholesterol and free fatty acid (FFA) levels. RNA-Seq analysis uncovered PHLPP1 role in lipid metabolism pathways. PHLPP1 interacted with and modestly increased ChREBP recruitment to Fasn promoter. PHLPP1-mediated lipid accumulation was attenuated by AMPK activation. Pharmacological inhibition or CRISPR/Cas9-mediated disruption of PHLPP1 resulted in lower lipid accumulation in the intersegmental vessels of HFD-fed zebrafish larvae along with a reduction in total cholesterol and triglyceride levels. Deficiency of phlp-2, C. elegans PHLPP1/2 ortholog, abolished lipid accumulation in high cholesterol-fed worms. We conclude that PHLPP1 exerts a significant effect on lipid buildup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...