Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Form Res ; 8: e53574, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869940

RESUMEN

BACKGROUND: To investigate the impacts of the COVID-19 pandemic on the health workforce, we aimed to develop a framework that synergizes natural language processing (NLP) techniques and human-generated analysis to reduce, organize, classify, and analyze a vast volume of publicly available news articles to complement scientific literature and support strategic policy dialogue, advocacy, and decision-making. OBJECTIVE: This study aimed to explore the possibility of systematically scanning intelligence from media that are usually not captured or best gathered through structured academic channels and inform on the impacts of the COVID-19 pandemic on the health workforce, contributing factors to the pervasiveness of the impacts, and policy responses, as depicted in publicly available news articles. Our focus was to investigate the impacts of the COVID-19 pandemic and, concurrently, assess the feasibility of gathering health workforce insights from open sources rapidly. METHODS: We conducted an NLP-assisted media content analysis of open-source news coverage on the COVID-19 pandemic published between January 2020 and June 2022. A data set of 3,299,158 English news articles on the COVID-19 pandemic was extracted from the World Health Organization Epidemic Intelligence through Open Sources (EIOS) system. The data preparation phase included developing rules-based classification, fine-tuning an NLP summarization model, and further data processing. Following relevancy evaluation, a deductive-inductive approach was used for the analysis of the summarizations. This included data extraction, inductive coding, and theme grouping. RESULTS: After processing and classifying the initial data set comprising 3,299,158 news articles and reports, a data set of 5131 articles with 3,007,693 words was devised. The NLP summarization model allowed for a reduction in the length of each article resulting in 496,209 words that facilitated agile analysis performed by humans. Media content analysis yielded results in 3 sections: areas of COVID-19 impacts and their pervasiveness, contributing factors to COVID-19-related impacts, and responses to the impacts. The results suggest that insufficient remuneration and compensation packages have been key disruptors for the health workforce during the COVID-19 pandemic, leading to industrial actions and mental health burdens. Shortages of personal protective equipment and occupational risks have increased infection and death risks, particularly at the pandemic's onset. Workload and staff shortages became a growing disruption as the pandemic progressed. CONCLUSIONS: This study demonstrates the capacity of artificial intelligence-assisted media content analysis applied to open-source news articles and reports concerning the health workforce. Adequate remuneration packages and personal protective equipment supplies should be prioritized as preventive measures to reduce the initial impact of future pandemics on the health workforce. Interventions aimed at lessening the emotional toll and workload need to be formulated as a part of reactive measures, enhancing the efficiency and maintainability of health delivery during a pandemic.

2.
Digit Health ; 10: 20552076241241244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638406

RESUMEN

Objective: Sleep quality is a crucial concern, particularly among youth. The integration of health coaching with question-answering (QA) systems presents the potential to foster behavioural changes and enhance health outcomes. This study proposes a novel human-AI sleep coaching model, combining health coaching by peers and a QA system, and assesses its feasibility and efficacy in improving university students' sleep quality. Methods: In a four-week unblinded pilot randomised controlled trial, 59 university students (mean age: 21.9; 64% males) were randomly assigned to the intervention (health coaching and QA system; n = 30) or the control conditions (QA system; n = 29). Outcomes included efficacy of the intervention on sleep quality (Pittsburgh Sleep Quality Index; PSQI), objective and self-reported sleep measures (obtained from Fitbit and sleep diaries) and feasibility of the study procedures and the intervention. Results: Analysis revealed no significant differences in sleep quality (PSQI) between intervention and control groups (adjusted mean difference = -0.51, 95% CI: [-1.55-0.77], p = 0.40). The intervention group demonstrated significant improvements in Fitbit measures of total sleep time (adjusted mean difference = 32.5, 95% CI: [5.9-59.1], p = 0.02) and time in bed (adjusted mean difference = 32.3, 95% CI: [2.7-61.9], p = 0.03) compared to the control group, although other sleep measures were insignificant. Adherence was high, with the majority of the intervention group attending all health coaching sessions. Most participants completed baseline and post-intervention self-report measures, all diary entries, and consistently wore Fitbits during sleep. Conclusions: The proposed model showed improvements in specific sleep measures for university students and the feasibility of the study procedures and intervention. Future research may extend the intervention period to see substantive sleep quality improvements.

3.
JMIR Mhealth Uhealth ; 10(10): e38740, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36194462

RESUMEN

BACKGROUND: Conversational agents (CAs), also known as chatbots, are computer programs that simulate human conversations by using predetermined rule-based responses or artificial intelligence algorithms. They are increasingly used in health care, particularly via smartphones. There is, at present, no conceptual framework guiding the development of smartphone-based, rule-based CAs in health care. To fill this gap, we propose structured and tailored guidance for their design, development, evaluation, and implementation. OBJECTIVE: The aim of this study was to develop a conceptual framework for the design, evaluation, and implementation of smartphone-delivered, rule-based, goal-oriented, and text-based CAs for health care. METHODS: We followed the approach by Jabareen, which was based on the grounded theory method, to develop this conceptual framework. We performed 2 literature reviews focusing on health care CAs and conceptual frameworks for the development of mobile health interventions. We identified, named, categorized, integrated, and synthesized the information retrieved from the literature reviews to develop the conceptual framework. We then applied this framework by developing a CA and testing it in a feasibility study. RESULTS: The Designing, Developing, Evaluating, and Implementing a Smartphone-Delivered, Rule-Based Conversational Agent (DISCOVER) conceptual framework includes 8 iterative steps grouped into 3 stages, as follows: design, comprising defining the goal, creating an identity, assembling the team, and selecting the delivery interface; development, including developing the content and building the conversation flow; and the evaluation and implementation of the CA. They were complemented by 2 cross-cutting considerations-user-centered design and privacy and security-that were relevant at all stages. This conceptual framework was successfully applied in the development of a CA to support lifestyle changes and prevent type 2 diabetes. CONCLUSIONS: Drawing on published evidence, the DISCOVER conceptual framework provides a step-by-step guide for developing rule-based, smartphone-delivered CAs. Further evaluation of this framework in diverse health care areas and settings and for a variety of users is needed to demonstrate its validity. Future research should aim to explore the use of CAs to deliver health care interventions, including behavior change and potential privacy and safety concerns.


Asunto(s)
Diabetes Mellitus Tipo 2 , Telemedicina , Inteligencia Artificial , Comunicación , Humanos , Teléfono Inteligente
4.
J Med Internet Res ; 22(8): e17158, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32763886

RESUMEN

BACKGROUND: Conversational agents, also known as chatbots, are computer programs designed to simulate human text or verbal conversations. They are increasingly used in a range of fields, including health care. By enabling better accessibility, personalization, and efficiency, conversational agents have the potential to improve patient care. OBJECTIVE: This study aimed to review the current applications, gaps, and challenges in the literature on conversational agents in health care and provide recommendations for their future research, design, and application. METHODS: We performed a scoping review. A broad literature search was performed in MEDLINE (Medical Literature Analysis and Retrieval System Online; Ovid), EMBASE (Excerpta Medica database; Ovid), PubMed, Scopus, and Cochrane Central with the search terms "conversational agents," "conversational AI," "chatbots," and associated synonyms. We also searched the gray literature using sources such as the OCLC (Online Computer Library Center) WorldCat database and ResearchGate in April 2019. Reference lists of relevant articles were checked for further articles. Screening and data extraction were performed in parallel by 2 reviewers. The included evidence was analyzed narratively by employing the principles of thematic analysis. RESULTS: The literature search yielded 47 study reports (45 articles and 2 ongoing clinical trials) that matched the inclusion criteria. The identified conversational agents were largely delivered via smartphone apps (n=23) and used free text only as the main input (n=19) and output (n=30) modality. Case studies describing chatbot development (n=18) were the most prevalent, and only 11 randomized controlled trials were identified. The 3 most commonly reported conversational agent applications in the literature were treatment and monitoring, health care service support, and patient education. CONCLUSIONS: The literature on conversational agents in health care is largely descriptive and aimed at treatment and monitoring and health service support. It mostly reports on text-based, artificial intelligence-driven, and smartphone app-delivered conversational agents. There is an urgent need for a robust evaluation of diverse health care conversational agents' formats, focusing on their acceptability, safety, and effectiveness.


Asunto(s)
Comunicación , Atención a la Salud/normas , Programas Informáticos/normas , Humanos
5.
JMIR Mhealth Uhealth ; 4(4): e130, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27885989

RESUMEN

[This corrects the article DOI: 10.2196/mhealth.6562.].

6.
JMIR Mhealth Uhealth ; 4(4): e125, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27815231

RESUMEN

BACKGROUND: The importance of sleep is paramount to health. Insufficient sleep can reduce physical, emotional, and mental well-being and can lead to a multitude of health complications among people with chronic conditions. Physical activity and sleep are highly interrelated health behaviors. Our physical activity during the day (ie, awake time) influences our quality of sleep, and vice versa. The current popularity of wearables for tracking physical activity and sleep, including actigraphy devices, can foster the development of new advanced data analytics. This can help to develop new electronic health (eHealth) applications and provide more insights into sleep science. OBJECTIVE: The objective of this study was to evaluate the feasibility of predicting sleep quality (ie, poor or adequate sleep efficiency) given the physical activity wearable data during awake time. In this study, we focused on predicting good or poor sleep efficiency as an indicator of sleep quality. METHODS: Actigraphy sensors are wearable medical devices used to study sleep and physical activity patterns. The dataset used in our experiments contained the complete actigraphy data from a subset of 92 adolescents over 1 full week. Physical activity data during awake time was used to create predictive models for sleep quality, in particular, poor or good sleep efficiency. The physical activity data from sleep time was used for the evaluation. We compared the predictive performance of traditional logistic regression with more advanced deep learning methods: multilayer perceptron (MLP), convolutional neural network (CNN), simple Elman-type recurrent neural network (RNN), long short-term memory (LSTM-RNN), and a time-batched version of LSTM-RNN (TB-LSTM). RESULTS: Deep learning models were able to predict the quality of sleep (ie, poor or good sleep efficiency) based on wearable data from awake periods. More specifically, the deep learning methods performed better than traditional logistic regression. "CNN had the highest specificity and sensitivity, and an overall area under the receiver operating characteristic (ROC) curve (AUC) of 0.9449, which was 46% better as compared with traditional logistic regression (0.6463). CONCLUSIONS: Deep learning methods can predict the quality of sleep based on actigraphy data from awake periods. These predictive models can be an important tool for sleep research and to improve eHealth solutions for sleep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...