Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(19): 3704-3713, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37712589

RESUMEN

Hundreds of proteins determine the function of synapses, and synapses define the neuronal circuits that subserve myriad brain, cognitive, and behavioral functions. It is thus necessary to precisely manipulate specific proteins at specific sub-cellular locations and times to elucidate the roles of particular proteins and synapses in brain function. We developed PHOtochemically TArgeting Chimeras (PHOTACs) as a strategy to optically degrade specific proteins with high spatial and temporal precision. PHOTACs are small molecules that, upon wavelength-selective illumination, catalyze ubiquitylation and degradation of target proteins through endogenous proteasomes. Here, we describe the design and chemical properties of a PHOTAC that targets Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), which is abundant and crucial for the baseline synaptic function of excitatory neurons. We validate the PHOTAC strategy, showing that the CaMKIIα-PHOTAC is effective in mouse brain tissue. Light activation of CaMKIIα-PHOTAC removed CaMKIIα from regions of the mouse hippocampus only within 25 µm of the illuminated brain surface. The optically controlled degradation decreases synaptic function within minutes of light activation, measured by the light-initiated attenuation of evoked field excitatory postsynaptic potential (fEPSP) responses to physiological stimulation. The PHOTACs methodology should be broadly applicable to other key proteins implicated in synaptic function, especially for evaluating their precise roles in the maintenance of long-term potentiation and memory within subcellular dendritic domains.


Asunto(s)
Potenciación a Largo Plazo , Neuronas , Ratones , Animales , Neuronas/metabolismo , Transmisión Sináptica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Sinapsis/metabolismo , Hipocampo/metabolismo
2.
Nature ; 600(7889): 484-488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759316

RESUMEN

Could learning that uses cognitive control to judiciously use relevant information while ignoring distractions generally improve brain function, beyond forming explicit memories? According to a neuroplasticity hypothesis for how some cognitive behavioural therapies are effective, cognitive control training (CCT) changes neural circuit information processing1-3. Here we investigated whether CCT persistently alters hippocampal neural circuit function. We show that mice learned and remembered a conditioned place avoidance during CCT that required ignoring irrelevant locations of shock. CCT facilitated learning new tasks in novel environments for several weeks, relative to unconditioned controls and control mice that avoided the same place during reduced distraction. CCT rapidly changes entorhinal cortex-to-dentate gyrus synaptic circuit function, resulting in an excitatory-inhibitory subcircuit change that persists for months. CCT increases inhibition that attenuates the dentate response to medial entorhinal cortical input, and through disinhibition, potentiates the response to strong inputs, pointing to overall signal-to-noise enhancement. These neurobiological findings support the neuroplasticity hypothesis that, as well as storing item-event associations, CCT persistently optimizes neural circuit information processing.


Asunto(s)
Cognición/fisiología , Hipocampo/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Animales , Reacción de Prevención/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Terapia Cognitivo-Conductual , Condicionamiento Operante/fisiología , Giro Dentado/citología , Giro Dentado/fisiología , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Femenino , Neuronas GABAérgicas , Hipocampo/citología , Potenciación a Largo Plazo , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Procesamiento Espacial , Sinapsis/fisiología
3.
Eur J Neurosci ; 54(8): 6795-6814, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33540466

RESUMEN

PKMζ is an autonomously active PKC isoform crucial for the maintenance of synaptic long-term potentiation (LTP) and long-term memory. Unlike other kinases that are transiently stimulated by second messengers, PKMζ is persistently activated through sustained increases in protein expression of the kinase. Therefore, visualizing increases in PKMζ expression during long-term memory storage might reveal the sites of its persistent action and thus the location of memory-associated LTP maintenance in the brain. Using quantitative immunohistochemistry validated by the lack of staining in PKMζ-null mice, we examined the amount and distribution of PKMζ in subregions of the hippocampal formation of wild-type mice during LTP maintenance and spatial long-term memory storage. During LTP maintenance in hippocampal slices, PKMζ increases in the pyramidal cell body and stimulated dendritic layers of CA1 for at least 2 hr. During spatial memory storage, PKMζ increases in CA1 pyramidal cells for at least 1 month, paralleling the persistence of the memory. During the initial expression of the memory, we tagged principal cells with immediate-early gene Arc promoter-driven transcription of fluorescent proteins. The subset of memory-tagged CA1 cells selectively increases expression of PKMζ during memory storage, and the increase persists in dendritic compartments within stratum radiatum for 1 month, indicating long-term storage of information in the CA3-to-CA1 pathway. We conclude that persistent increases in PKMζ trace the molecular mechanism of LTP maintenance and thus the sites of information storage within brain circuitry during long-term memory.


Asunto(s)
Potenciación a Largo Plazo , Proteína Quinasa C , Animales , Hipocampo/metabolismo , Memoria a Largo Plazo , Ratones , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Memoria Espacial
4.
Elife ; 92020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33084572

RESUMEN

In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop - including nearly all DGCs in the dorsal hippocampus - secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.


Asunto(s)
Reacción de Prevención , Giro Dentado/anomalías , Memoria , Receptores Acoplados a Proteínas G/genética , Aprendizaje Espacial , Animales , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Prueba del Laberinto Acuático de Morris , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Secuencia de ARN
5.
J Neurosci Methods ; 338: 108671, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32135212

RESUMEN

BACKGROUND: Single-unit recording in Pavlovian conditioning tasks requires the use of within-subject designs as well as sampling a considerable number of trials per trial type and session, which increases the total trial count. Pavlovian conditioning, on the other hand, requires a long average intertrial interval (ITI) relative to cue duration for cue-specific learning to occur. These requirements combined can make the session duration unfeasibly long. NEW METHOD: To circumvent this issue, we developed a self-initiated variant of the Pavlovian magazine-approach procedure in rodents. Unlike the standard procedure, where the animals passively receive the trials, the self-initiated procedure grants animals agency to self-administer and self-pace trials from a predetermined, pseudorandomized list. Critically, whereas in the standard procedure the typical ITI is in the order of minutes, our procedure uses a much shorter ITI (10 s). RESULTS: Despite such a short ITI, discrimination learning in the self-initiated procedure is comparable to that observed in the standard procedure with a typical ITI, and superior to that observed in the standard procedure with an equally short ITI. COMPARISON WITH EXISTING METHOD(S): The self-initiated procedure permits delivering 100 trials in a ∼1-h session, almost doubling the number of trials safely attainable over that period with the standard procedure. CONCLUSIONS: The self-initiated procedure enhances the collection of neural correlates of cue-reward learning while producing good discrimination performance. Other advantages for neural recording studies include ensuring that at the start of each trial the animal is engaged, attentive and in the same location within the conditioning chamber.


Asunto(s)
Señales (Psicología) , Recompensa , Roedores , Animales , Femenino , Masculino , Ratas , Ratas Long-Evans , Refuerzo en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...