Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Rheum Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134394

RESUMEN

OBJECTIVES: Inflammatory mediators such as interleukin 6 (IL-6) are known to activate catabolic responses in chondrocytes during osteoarthritis (OA). This study aimed to investigate the role of a downstream target gene of IL-6, the serine protease inhibitor SerpinA3N, in the development of cartilage damage in OA. METHODS: RNA sequencing was performed in murine primary chondrocytes treated with IL-6, and identified target genes were confirmed in human and murine OA cartilage samples. Male cartilage-specific Serpina3n-deficient mice and control mice underwent meniscectomy (MNX) or sham surgery at 10 weeks of age. Intra-articular injections of SerpinA3N or sivelestat (an inhibitor of leucocyte elastase (LE), a substrate for SerpinA3N) were performed in wild-type mice after MNX. Joint damage was assessed 3-9 weeks after surgery by histology and micro-CT. The effect of sivelestat was assessed in cartilage explants exposed to macrophage-derived conditioned media. RESULTS: RNA sequencing revealed that SerpinA3N is a major target gene of IL-6 in chondrocytes. The expression of SerpinA3N is increased in OA cartilage. Conditional loss of SerpinA3N in chondrocytes aggravated OA in mice, while intra-articular injection of SerpinA3N limited joint damage. Chondrocytes did not produce serine proteases targeted by SerpinA3N. By contrast, macrophages produced LE on IL-6 stimulation. Sivelestat limited the cartilage catabolism induced by conditioned media derived from IL-6-stimulated macrophages. Additionally, an intra-articular injection of sivelestat is protected against OA in the MNX model. CONCLUSIONS: SerpinA3N protects cartilage against catabolic factors produced by macrophages, including LE. SerpinA3N and LE represent new therapeutic targets to dampen cartilage damage in OA.

2.
Sci Adv ; 8(34): eabn3106, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36026443

RESUMEN

Articular cartilage has low regenerative capacity despite permanent stress. Irreversible cartilage lesions characterize osteoarthritis (OA); this is not followed by tissue repair. Lin28a, an RNA binding protein, is detected in damaged cartilage in humans and mice. We investigated the role of LIN28a in cartilage physiology and in osteoarthritis. Lin28a-inducible conditional cartilage deletion up-regulated Mmp13 in intact mice and exacerbated the cartilage destruction in OA mice. Lin28a-specific cartilage overexpression protected mice against cartilage breakdown, stimulated chondrocyte proliferation and the expression of Prg4 and Sox9, and down-regulated Mmp13. Lin28a overexpression inhibited Let-7b and Let-7c miRNA levels while RNA-sequencing analysis revealed five genes of transcriptional factors regulated by Let-7. Moreover, Lin28a overexpression up-regulated HMGA2 and activated SOX9 transcription, a factor required for chondrocyte reprogramming. HMGA2 siRNA knockdown inhibited the cartilage protective effect of Lin28a overexpression. This study provides insights into a new pathway including the Lin28a-Let7 axis, thus promoting chondrocyte anabolism in injured cartilage in mice.


Asunto(s)
Cartílago Articular , Osteoartritis , Proteínas de Unión al ARN , Factor de Transcripción SOX9 , Animales , Cartílago Articular/patología , Reprogramación Celular , Condrocitos , Metaloproteinasa 13 de la Matriz , Ratones , Osteoartritis/patología , Proteínas de Unión al ARN/genética , Factor de Transcripción SOX9/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA