Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Open Bio ; 4: 105-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24490134

RESUMEN

The yeast Rgt1 repressor inhibits transcription of the glucose transporter (HXT) genes in the absence of glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA) and dissociates from the HXT promoters, resulting in expression of HXT genes. In this study, using Rgt1 chimeras that bind DNA constitutively, we investigate how glucose regulates Rgt1 function. Our results show that the DNA-bound Rgt1 constructs repress expression of the HXT1 gene in conjunction with Ssn6-Tup1 and Mth1, and that this repression is lifted when they dissociate from Ssn6-Tup1 in high glucose conditions. Mth1 mediates the interaction between the Rgt1 constructs and Ssn6-Tup1, and glucose-induced downregulation of Mth1 enables PKA to phosphorylate the Rgt1 constructs. This phosphorylation induces dissociation of Ssn6-Tup1 from the DNA-bound Rgt1 constructs, resulting in derepression of HXT gene expression. Therefore, Rgt1 removal from DNA occurs in response to glucose but is not necessary for glucose induction of HXT gene expression, suggesting that glucose regulates Rgt1 function by primarily modulating the Rgt1 interaction with Ssn6-Tup1.

2.
Biochim Biophys Acta ; 1830(11): 5204-10, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23911748

RESUMEN

BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW: This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS: The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE: Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.


Asunto(s)
Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
3.
J Cell Biochem ; 112(11): 3268-75, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21748783

RESUMEN

The yeast Rgt1 repressor is a bifunctional protein that acts as a transcriptional repressor and activator. Under glucose-limited conditions, Rgt1 induces transcriptional repression by forming a repressive complex with its corepressors Mth1 and Std1. Here, we show that Rgt1 is converted from a transcriptional repressor into an activator under high glucose conditions and this occurs through two independent but consecutive events mediated by two glucose signaling pathways: (1) disruption of the repressive complex by the Rgt2/Snf3 pathway; (2) phosphorylation of Rgt1 by the cAMP-dependent protein kinase (cAMP-PKA) pathway. Rgt1 is phosphorylated by PKA at four serine residues within its amino-terminal region, but this does not occur until the repressive complex is disrupted. While phosphorylation of any one of these sites is sufficient to enable Rgt1 to induce transcriptional activation, phosphorylation of all the sites results in the release of Rgt1 from DNA. We discuss how the bifunctional properties of Rgt1 are regulated through differential phosphorylation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Biocatálisis , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microscopía Fluorescente , Fosforilación
4.
Rev Neurosci ; 22(1): 85-93, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21615263

RESUMEN

Zebrafish are at the forefront of neurobiological research and have been gaining popularity as a viable and valid behavioral model in a variety of research applications (e.g., assessing drug induced behavioral changes). This model becomes even more attractive when considering the behavioral changes that follow exposure to compounds that are water-soluble. As such, several studies have implicated both acute and chronic ethanol exposure in the modulation of zebrafish behavior. Within this arena there appears to be a common trend across multiple studies. As with many drugs ethanol appears to influence behavior in a dose-dependent manner. In this review, we compare and contrast several studies that measure behavior as a result of alcohol exposure. Appended to this review are pilot data that report zebrafish blood alcohol concentrations as a function of acute exposure.


Asunto(s)
Alcoholes/farmacología , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Agresión/efectos de los fármacos , Consumo de Bebidas Alcohólicas , Alcoholes/sangre , Animales , Ansiedad/fisiopatología , Conducta Animal/clasificación , Depresores del Sistema Nervioso Central/sangre , Miedo/efectos de los fármacos , Modelos Animales , Actividad Motora/efectos de los fármacos , Conducta Social , Pez Cebra
5.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(6): 1416-20, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21320565

RESUMEN

Traditionally, rodent sustained attention models are used for studying the neurobiological underpinnings of attention, for assessing the disruptive and interactive effects of drugs and environmental toxins and for predicting the efficacy of pharmacotherapies for attention disorders. Virtually all-major psychiatric disorders are characterized by disturbances in attention or concentration. Additionally, many psychoactive drugs produce simultaneous effects on a variety of psychological processes. Behavioral measures in tasks designed to assess cognitive processes in rodents characterize and dissociate these multiple influences. While the zebrafish (Danio rerio) has been at the vanguard of neurobiological research and is increasing in popularity as a model organism for behavioral applications, their attentional capacity has not been fully assessed. Here we review some of the more popular animal models and discuss the utility of a choice discrimination zebrafish model.


Asunto(s)
Atención/clasificación , Conducta Animal , Modelos Animales , Pez Cebra , Animales , Conducta de Elección , Discriminación en Psicología
6.
FEBS Lett ; 581(17): 3230-4, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17586499

RESUMEN

The yeast glucose sensors Rgt2 and Snf3 generate a signal in response to glucose that leads to degradation of Mth1 and Std1, thereby relieving repression of Rgt1-repressed genes such as the glucose transporter genes (HXT). Mth1 and Std1 are degraded via the Yck1/2 kinase-SCF(Grr1)-26S proteasome pathway triggered by the glucose sensors. Here, we show that RGT2-1 promotes ubiquitination and subsequent degradation of Mth1 and Std1 regardless of the presence of glucose. Site-specific mutagenesis reveals that the conserved lysine residues of Mth1 and Std1 might serve as attachment sites for ubiquitin, and that the potential casein kinase (Yck1/2) sites of serine phosphorylation might control their ubiquitination. Finally, we show that active Snf1 protein kinase in high glucose prevents degradation of Mth1 and Std1.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Proteínas de Transporte de Monosacáridos/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Quinasa de la Caseína I/metabolismo , Activación Enzimática/efectos de los fármacos , Proteínas F-Box , Péptidos y Proteínas de Señalización Intracelular , Lisina/genética , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Monosacáridos/fisiología , Fosforilación , Isoformas de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA