Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 899: 165503, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454861

RESUMEN

Studying the forest subsurface is a challenge because of its heterogeneous nature and difficult access. Traditional approaches used by ecologists to characterize the subsurface have a low spatial representativity. This review article illustrates how geophysical techniques can and have been used to get new insights into forest ecology. Near-surface geophysics offers a wide range of methods to characterize the spatial and temporal variability of subsurface properties in a non-destructive and integrative way, each with its own advantages and disadvantages. These techniques can be used alone or combined to take advantage of their complementarity. Our review led us to define three topics how near-surface geophysics can support forest ecology studies: 1) detection of root systems, 2) monitoring of water quantity and dynamics, and 3) characterisation of spatial heterogeneity in subsurface properties at the stand level. The number of forest ecology studies using near-surface geophysics is increasing and this multidisciplinary approach opens new opportunities and perspectives for improving quantitative assessment of biophysical properties and exploring forest response to the environment and adaptation to climate change.


Asunto(s)
Ecosistema , Bosques , Ecología/métodos , Cambio Climático
2.
Transp Porous Media ; 146(1-2): 435-461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36685616

RESUMEN

We investigate how diffusion-limited mixing of a layered solute concentration distribution within a porous medium impacts bulk electrical conductivity. To do so, we perform a milli-fluidic tracer test by injecting a fluorescent and electrically conductive tracer in a quasi two-dimensional (2D) water-saturated porous medium. High resolution optical- and geoelectrical monitoring of the tracer is achieved by using a fluorimetry technique and equipping the flow cell with a resistivity meter, respectively. We find that optical and geoelectrical outputs can be related by a temporal re-scaling that accounts for the different diffusion rates of the optical and electrical tracers. Mixing-driven perturbations of the electrical equipotential field lines cause apparent electrical conductivity time-series, measured perpendicularly to the layering, to peak at times that are in agreement with the diffusion transport time-scale associated with the layer width. Numerical simulations highlight high sensitivity of such electrical data to the layers' degree of mixing and their distance to the injection electrodes. Furthermore, the electrical data correlate well with time-series of two commonly used solute mixing descriptors: the concentration variance and the scalar dissipation rate.

3.
J Colloid Interface Sci ; 609: 852-867, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34839916

RESUMEN

Electrochemical interactions at calcite-water interface are characterized by the zeta potential and play an important role in many subsurface applications. In this work we report a new physically meaningful surface complexation model that is proven to be efficient in predicting calcite-water zeta potentials for a wide range of experimental conditions. Our model uses a two-stage optimization for matching experimental observations. First, equilibrium constants are optimized, and the Stern layer capacitance is optimized in the second stage. The model is applied to a variety of experimental sets that correspond to intact natural limestones saturated with equilibrated solutions of low-to-high salinity, and crushed Iceland Spar sample saturated with NaCl at non-equilibrium conditions. The proposed linear correlation of the Stern layer capacitance with the ionic strength is the main novel contribution to our surface complexation model without which high salinity experiments cannot be modelled. Our model is fully predictive given accurately known conditions. Therefore, the reported parameters and modelling protocol are of significant importance for improving our understanding of the complex calcite-water interfacial interactions. The findings provide a robust tool to predict electrochemical properties of calcite-water interfaces, which are essential for many subsurface applications including hydrology, geothermal resources, CO2 sequestration and hydrocarbon recovery.

4.
J Colloid Interface Sci ; 468: 262-275, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26852350

RESUMEN

Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model.

5.
J Colloid Interface Sci ; 388(1): 243-56, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22985594

RESUMEN

Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H(2) bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...