Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(5): 555-571, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38291752

RESUMEN

Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single, skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single-molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force after stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.


Asunto(s)
Actinas , Depresión , Animales , Conejos , Sarcómeros/fisiología , Fibras Musculares Esqueléticas/fisiología , Miosinas , Contracción Muscular
2.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808737

RESUMEN

Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part, due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force following stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.

3.
Dev Med Child Neurol ; 65(12): 1639-1645, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37198748

RESUMEN

AIM: To determine the dose-response relationship of collagenase Clostridium histolyticum (CCH) on collagen content and the change in muscle fiber bundle stiffness after ex vivo treatment of adductor longus biopsies with CCH in children with cerebral palsy (CP). METHOD: Biopsy samples of adductor longus from children with CP (classified in Gross Motor Function Classification System levels IV and V) were treated with 0 U/mL, 200 U/mL, 350 U/mL, or 500 U/mL CCH; percentage collagen reduction was measured to determine the dose-response. Peak and steady-state stresses were determined at 1%, 2.5%, 5%, and 7.5% strain increments; Young's modulus was calculated. RESULTS: Eleven patients were enrolled (nine males, two females, mean age at surgery 6 years 5 months; range: 2-16 years). A linear CCH dose-response relationship was determined. Peak and steady-state stress generation increased linearly at 5.9/2.3mN/mm2 , 12.4/5.3mN/mm2 , 22.2/9.7mN/mm2 , and 33.3/15.5mN/mm2 at each percentage strain increment respectively. After CCH treatment, peak and steady-state stress generation decreased to 3.2/1.2mN/mm2 , 6.5/2.9mN/mm2 , 12.2/5.7mN/mm2 , and 15.4/7.7mN/mm2 respectively (p < 0.004). Young's modulus decreased from 205 kPa to 100 kPa after CCH (p = 0.003). INTERPRETATION: This preclinical ex vivo study provides proof of concept for the use of collagenase to decrease muscle stiffness in individuals with CP.


Asunto(s)
Parálisis Cerebral , Masculino , Niño , Femenino , Humanos , Colagenasa Microbiana/uso terapéutico , Músculo Esquelético , Colágeno , Fibras Musculares Esqueléticas , Resultado del Tratamiento
4.
J Biomech ; 152: 111579, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054597

RESUMEN

The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Conectina , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Fenómenos Mecánicos , Sarcómeros/fisiología , Contracción Isométrica/fisiología
5.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865266

RESUMEN

In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, mdm titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces. Furthermore, no RFE structural state was detected in mdm muscle. We posit that decreased lattice spacing, increased thick filament stiffness, and increased non-crossbridge forces are the major contributors to RFE. We conclude that titin directly contributes to RFE.

6.
Biophys J ; 122(8): 1538-1547, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36932677

RESUMEN

Residual force enhancement (RFE), an increase in isometric force after active stretching of a muscle compared with the purely isometric force at the corresponding length, has been consistently observed throughout the structural hierarchy of skeletal muscle. Similar to RFE, passive force enhancement (PFE) is also observable in skeletal muscle and is defined as an increase in passive force when a muscle is deactivated after it has been actively stretched compared with the passive force following deactivation of a purely isometric contraction. These history-dependent properties have been investigated abundantly in skeletal muscle, but their presence in cardiac muscle remains unresolved and controversial. The purpose of this study was to investigate whether RFE and PFE exist in cardiac myofibrils and whether the magnitudes of RFE and PFE increase with increasing stretch magnitudes. Cardiac myofibrils were prepared from the left ventricles of New Zealand White rabbits, and the history-dependent properties were tested at three different final average sarcomere lengths (n = 8 for each), 1.8, 2, and 2.2 µm, while the stretch magnitude was kept at 0.2 µm/sarcomere. The same experiment was repeated with a final average sarcomere length of 2.2 µm and a stretching magnitude of 0.4 µm/sarcomere (n = 8). All 32 cardiac myofibrils exhibited increased forces after active stretching compared with the corresponding purely isometric reference conditions (p < 0.05). Furthermore, the magnitude of RFE was greater when myofibrils were stretched by 0.4 compared with 0.2 µm/sarcomere (p < 0.05). We conclude that, like in skeletal muscle, RFE and PFE are properties of cardiac myofibrils and are dependent on stretch magnitude.


Asunto(s)
Miofibrillas , Sarcómeros , Animales , Conejos , Miofibrillas/fisiología , Fenómenos Biomecánicos , Sarcómeros/fisiología , Músculo Esquelético/fisiología , Fenómenos Mecánicos , Contracción Isométrica/fisiología , Contracción Muscular
7.
J Exp Biol ; 225(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36268629

RESUMEN

The steady-state isometric force produced by skeletal muscle after active shortening and stretching is depressed and enhanced, respectively, compared with purely isometric force produced at corresponding final lengths and at the same level of activation. One hypothesis proposed to account for these force depression (FD) and force enhancement (FE) properties is a change in cross-bridge cycling kinetics. The rate of cross-bridge attachment (f) and/or cross-bridge detachment (g) may be altered following active shortening and active stretching, leading to FD and FE, respectively. Experiments elucidating cross-bridge kinetics in actively shortened and stretched muscle preparations and their corresponding purely isometric contractions have yet to be performed. The aim of this study was to investigate cross-bridge cycling kinetics of muscle fibres at steady-state following active shortening and stretching. This was done by determining muscle fibre stiffness and rate of active force redevelopment following a quick release-re-stretch protocol (kTR). Applying these measures to equations previously used in the literature for a two-state cross-bridge cycling model (attached/detached cross-bridges) allowed us to determine apparent f and g, the proportion of attached cross-bridges, and the force produced per cross-bridge. kTR, apparent f and g, the proportion of attached cross-bridges and the force produced per cross-bridge were significantly decreased following active shortening compared with corresponding purely isometric contractions, indicating a change in cross-bridge cycling kinetics. Additionally, we showed no change in cross-bridge cycling kinetics following active stretch compared with corresponding purely isometric contractions. These findings suggest that FD is associated with changes in cross-bridge kinetics, whereas FE is not.


Asunto(s)
Contracción Isométrica , Fibras Musculares Esqueléticas , Animales , Conejos , Contracción Isométrica/fisiología , Fibras Musculares Esqueléticas/fisiología , Fenómenos Mecánicos , Músculos Psoas/fisiología , Músculo Esquelético/fisiología , Cinética , Contracción Muscular
8.
Phys Act Nutr ; 26(1): 28-38, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35510443

RESUMEN

PURPOSE: Aerobic exercise training results in distinct structural and mechanical myocardial adaptations. In skeletal muscle, whey protein supplementation is effective in enhancing muscle adaptation following resistance exercise. However, it is unclear whether cardiac adaptation to aerobic exercise can be enhanced by systematic protein supplementation. METHODS: Twelve-week-old rats were assigned to 12 weeks of either sedentary or aerobic exercise with either a standard (Sed+Standard, Ex+Standard) or high-protein (Sed+Pro, Ex+Pro) diet. Echocardiography was used to measure cardiac structural remodeling and performance. Skinned cardiac fiber bundles were used to determine the active and passive stress properties, maximum shortening velocity, and calcium sensitivity. RESULTS: Aerobic training was characterized structurally by increases in ventricle volume (Ex+Standard, 19%; Ex+Pro, 29%) and myocardial thickness (Ex+Standard, 26%; Ex+- Pro, 12%) compared to that of baseline. Skinned trabecula r fiber bundles also had a greater unloaded shortening velocity (Sed+Standard, 1.04±0.05; Sed+Pro, 1.07±0.03; Ex- +Standard, 1.16±0.04; Ex+Pro, 1.18±0.05 FL/s) and calcium sensitivity (pCa50: Sed+Standard, 6.04±0.17; Sed+Pro, 6.08±0.19; Ex+Standard, 6.30±0.09; Ex+Pro, 6.36±0.12) in trained hearts compared to that of hearts from sedentary animals. However, the addition of a high-protein diet did not provide additional benefits to either the structural or mechanical adaptations of the myocardium. CONCLUSION: Therefore, it seems that a high-whey-protein diet does not significantly enhance adaptations of the heart to aerobic exercise in comparison to that of a standard diet.

9.
J Exp Biol ; 225(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35485194

RESUMEN

The steady-state isometric force of a muscle after active stretching is greater than the steady-state force for a purely isometric contraction at the same length and activation level. The mechanisms underlying this property, termed residual force enhancement (rFE), remain unknown. When myofibrils are actively stretched while cross-bridge cycling is inhibited, rFE is substantially reduced, suggesting that cross-bridge cycling is essential to produce rFE. Our purpose was to further investigate the role of cross-bridge cycling in rFE by investigating whether fast stretching that causes cross-bridge slipping is associated with a loss of rFE. Skinned fibre bundles from rabbit psoas muscles were stretched slowly (0.08 µm s-1) or rapidly (800 µm s-1) while activated, from an average sarcomere length of 2.4 to 3.2 µm. Force was enhanced by 38±4% (mean±s.e.m) after the slow stretches but was not enhanced after the fast stretches, suggesting that proper cross-bridge cycling is required to produce rFE.


Asunto(s)
Contracción Isométrica , Fibras Musculares Esqueléticas , Animales , Ciclismo , Contracción Isométrica/fisiología , Fenómenos Mecánicos , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Conejos , Sarcómeros/fisiología
10.
Spine (Phila Pa 1976) ; 47(11): 833-840, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265813

RESUMEN

STUDY DESIGN: Basic science, experimental animal study. OBJECTIVE: To determine the effects of Botulinum toxin type A (BTX-A) injections on the mechanical properties of skinned muscle fibers (cells) of rabbit paraspinal muscles. SUMMARY OF BACKGROUND DATA: BTX-A has been widely used in the treatment of disorders of muscle hyperactivity, such as spasticity, dystonia, and back pain. However, BTX-A injection has been shown to cause muscle atrophy, fat infiltration, and decreased force output in target muscles, but its potential effects on the contractile machinery and force production on the cellular level remain unknown. METHODS: Nineteen-month-old, male New Zealand White Rabbits received either saline or BTX-A injections into the paraspinal muscles, equally distributed along the left and right sides of the spine at T12, L1, and L2 at 0, 8, 12, 16, 20, and 24 weeks. Magnetic resonance imaging was used to quantify muscle crosssectional area and structural changes before and at 28 weeks following the initial injection. Skinned fibers isolated from the paraspinal muscles were tested for their active and passive force-length relationships, unloaded shortening velocity, and myosin heavy chain isoforms. RESULTS: BTX-A injections led to significant fat infiltration within the injected muscles and a greater proportion of IIa to IIx fibers. Isolated fast fibers from BTX-A injected animals had lower active force and unloaded shortening velocity compared with fibers from saline-injected control animals. Force and velocity properties were not different between groups for the slow fibers. CONCLUSION: Injection of BTX-A into the paraspinal rabbit muscles leads to significant alterations in the contractile properties of fast, but not slow, fibers.Level of Evidence: N/A.


Asunto(s)
Toxinas Botulínicas Tipo A , Animales , Toxinas Botulínicas Tipo A/farmacología , Humanos , Masculino , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/patología , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Conejos
11.
J Biomech ; 129: 110798, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34700144

RESUMEN

The purpose of this study was to investigate the alterations with obesity, and the effects of moderate aerobic exercise or prebiotic dietary-fibre supplementation on the mechanical and biochemical properties of the tail tendon in a rat model of high-fat/high-sucrose (HFS) diet-induced obesity. Thirty-two male Sprague-Dawley rats were randomized to chow (n = 8) or HFS (n = 24) diets. After 12-weeks, the HFS fed rats were further randomized into sedentary (HFS sedentary, n = 8), exercise (HFS + E, n = 8) or prebiotic fibre supplementation (HFS + F, n = 8) groups. After another 12-weeks, rats were sacrificed, and one tail tendon was isolated and tested. Stress-relaxation and stretch-to-failure tests were performed to determine mechanical properties (peak, steady-state, yield and failure stresses, Young's modulus, and yield and failure strains) of the tendons. The hydroxyproline content was also analyzed. The HFS sedentary and HFS + F groups had higher final body masses and fat percentages compared to the chow and HFS + E groups. Yield strain was reduced in the HFS sedentary rats compared to the chow rats. Peak and steady-state stresses, failure strain, Young's modulus, and hydroxyproline content were not different across groups. Although the HFS + E group showed higher failure stress, yield stress, and yield strain compared to the HFS sedentary group, HFS + F animals did not produce differences in the properties of the tail tendon compared to the HFS sedentary group. These results indicate that exposure to a HFS diet led to a reduction in the yield strain of the tail tendon and aerobic exercise, but not fibre supplementation, attenuated these diet-related alterations to tendon integrity.


Asunto(s)
Prebióticos , Cola (estructura animal) , Animales , Dieta , Dieta Alta en Grasa/efectos adversos , Masculino , Obesidad/etiología , Ratas , Ratas Sprague-Dawley , Tendones
12.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34445232

RESUMEN

Our purpose was to use small-angle X-ray diffraction to investigate the structural changes within sarcomeres at steady-state isometric contraction following active lengthening and shortening, compared to purely isometric contractions performed at the same final lengths. We examined force, stiffness, and the 1,0 and 1,1 equatorial and M3 and M6 meridional reflections in skinned rabbit psoas bundles, at steady-state isometric contraction following active lengthening to a sarcomere length of 3.0 µm (15.4% initial bundle length at 7.7% bundle length/s), and active shortening to a sarcomere length of 2.6 µm (15.4% bundle length at 7.7% bundle length/s), and during purely isometric reference contractions at the corresponding sarcomere lengths. Compared to the reference contraction, the isometric contraction after active lengthening was associated with an increase in force (i.e., residual force enhancement) and M3 spacing, no change in stiffness and the intensity ratio I1,1/I1,0, and decreased lattice spacing and M3 intensity. Compared to the reference contraction, the isometric contraction after active shortening resulted in decreased force, stiffness, I1,1/I1,0, M3 and M6 spacings, and M3 intensity. This suggests that residual force enhancement is achieved without an increase in the proportion of attached cross-bridges, and that force depression is accompanied by a decrease in the proportion of attached cross-bridges. Furthermore, the steady-state isometric contraction following active lengthening and shortening is accompanied by an increase in cross-bridge dispersion and/or a change in the cross-bridge conformation compared to the reference contractions.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Relajación Muscular , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Animales , Conejos
13.
Phys Act Nutr ; 25(2): 8-14, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34315201

RESUMEN

PURPOSE: The purpose of this study was to investigate the effects of a high-fat high-sucrose (HFHS) diet on previously reported adaptations of cardiac morphological and contractile properties to resistance training. METHODS: Twelve-week-old rats participated in 12-weeks of resistance exercise training and consumed an HFHS diet. Echocardiography and skinned cardiac muscle fiber bundle testing were performed to determine the structural and mechanical adaptations. RESULTS: Compared to chow-fed sedentary animals, both HFHS- and chow-fed resistance-trained animals had thicker left ventricular walls. Isolated trabecular fiber bundles from chow-fed resistance-trained animals had greater force output, shortening velocities, and calcium sensitivities than those of chow-fed sedentary controls. However, trabeculae from the HFHS resistance-trained animals had greater force output but no change in unloaded shortening velocity or calcium sensitivity than those of the chow-fed sedentary group animals. CONCLUSION: Resistance exercise training led to positive structural and mechanical adaptations of the heart, which were partly offset by the HFHS diet.

14.
Med Sci Sports Exerc ; 53(8): 1583-1594, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33731663

RESUMEN

INTRODUCTION: Aerobic and resistance exercise training results in distinct structural changes of the heart. The mechanics of how cardiac cells adapt to resistance training and the benefits to cells when combining aerobic and resistance exercise remains largely unknown. The purpose of this study was to compare mechanical adaptations of skinned cardiac fiber bundles after chronic resistance, aerobic and combined exercise training in rats. We hypothesized that differences in mechanical function on the fiber bundle level coincide with differences previously reported in the structure of the heart. METHOD: Twelve-week-old rats were assigned to (i) an aerobic running group (n = 6), (ii) a ladder climbing resistance group (n = 6), (iii) a combination group subjected to aerobic and resistance training (n = 6), or (iv) a sedentary (control) group (n = 5). Echocardiography was used to measure cardiac structural remodeling. Skinned cardiac fiber bundles were used to determine active and passive force properties, maximal shortening velocity, and calcium sensitivity. RESULTS: Aerobically trained animals had 43%-49% greater ventricular volume and myocardial thickness, and a 4%-17% greater shortening velocity and calcium sensitivity compared with control group rats. Resistance-trained rats had 37%-71% thicker ventricular walls, a 56% greater isometric force production, a 9% greater shortening velocity, and a 4% greater calcium sensitivity compared with control group rats. The combination exercise-trained rats had 25%-43% greater ventricular volume and myocardial wall thickness, a 55% greater active force production, a 7% greater shortening velocity, and a 60% greater cross-bridge cooperativity compared with control group rats. CONCLUSIONS: The heart adapts differently to each exercise modality, and a combination of aerobic and resistance training may have the greatest benefit for cardiac health and performance.

15.
Appl Physiol Nutr Metab ; 46(1): 46-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32598858

RESUMEN

Decrements in contractile function resulting from obesity are thought to be major reasons for the link between obesity and cardiovascular disease, while exercise has been shown to improve cardiac muscle contractile function. The purpose of this study was to evaluate cardiac contractile properties following obesity induction and the potential protective effect of exercise. Twelve-week-old rats (n = 30) were organized into either a chow diet or a high-fat, high-sucrose (HFHS) diet group. Following 12 weeks of obesity induction the HFHS group animals were stratified and grouped into sedentary (HFHS+Sed) and exercise (HFHS+Ex) groups for an additional 12 weeks. Following 24 weeks of diet intervention, with 12 weeks of aerobic exercise (25 m/min, 30 min/day, 5 days/week) for the HFHS+Ex group, skinned cardiac fibre bundle testing was used to evaluate cardiac contractile properties. Body fat and mass were significantly greater in the HFHS-fed animals compared with the chow controls (p < 0.043). Hearts from rats in the HFHS+Sed group had significantly greater mass (p < 0.03), significantly slower maximum shortening velocity (p = 0.001), and tended to have lower calcium sensitivity (p = 0.077) and a lower proportion of α-myosin heavy chain composition (p = 0.074) than the sedentary chow animals. However, 12 weeks of moderate aerobic exercise partially prevented these decrements in contractile properties. Novelty Cardiac muscle from animals exposed to an obesogenic diet for 24 weeks had impaired contractile properties compared with controls. Obesity-induced impairment of contractile properties of the heart were partially prevented by a 12-week aerobic exercise regime.


Asunto(s)
Grasas de la Dieta/efectos adversos , Sacarosa en la Dieta/efectos adversos , Corazón/fisiología , Contracción Muscular/fisiología , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Alimentación Animal , Animales , Modelos Animales de Enfermedad , Corazón/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley
16.
Mech Ageing Dev ; 192: 111359, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32956701

RESUMEN

Advanced age has been shown to result in decreased compliance, shortening velocity, and calcium sensitivity of the heart muscle. Even though cardiac health has been studied extensively in elderly populations, relatively little is known about cardiac health and age for the first part of adulthood. The purpose of this study was to compare cardiac contractile properties across the first year of life in rats (between 17-53 weeks), corresponding to early to mid-adulthood. Hearts were harvested from rats aged 17-, 24-, 36-, and 53-weeks. Skinned cardiac trabecular fibre bundle testing was used to evaluate active and passive force properties, maximum shortening velocity, calcium sensitivity, and myosin heavy chain isoforms. Maximum active stress production was not different between age groups. Calcium sensitivity increased progressively, while shortening velocity remained unchanged after an increase from 17-and 24-weeks. Passive stiffness decreased between 17- and 24-weeks, but then increased progressively through to 53-weeks. Thus, many of the observed detrimental changes in systolic function (reduced shortening velocity and calcium sensitivity) associated with aging, do not seem to occur in early to mid-adulthood, while early signs of increased diastolic stiffness manifest within 53 weeks of age and may represent a first sign of decreasing heart function and health.


Asunto(s)
Adaptación Fisiológica , Senescencia Celular/fisiología , Ventrículos Cardíacos , Contracción Muscular/fisiología , Miocardio , Cadenas Pesadas de Miosina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Ventrículos Cardíacos/crecimiento & desarrollo , Ventrículos Cardíacos/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Isoformas de Proteínas , Ratas , Ratas Sprague-Dawley
17.
J Biomech ; 109: 109953, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32807325

RESUMEN

In skeletal muscle, steady-state force is consistently greater following active stretch than during a purely isometric contraction at the same length (residual force enhancement; RFE). Similarly, when deactivated, the force remains higher following active stretch than following an isometric condition (passive force enhancement; PFE). RFE and PFE have been associated with the sarcomere protein titin, but skeletal and cardiac titin have different structures, and results regarding RFE in cardiac muscle have been inconsistent and contradictory. Therefore, the purpose of this study was to determine if cardiac muscle exhibits RFE and PFE. Skinned fibre bundles (n = 10) were activated isometrically at a sarcomere length of 2.2 µm and actively stretched by 15% of their length. The resultant active and passive forces were compared to the corresponding forces obtained for purely isometric contractions at the long length. RFE was observed in all fibre bundles, averaging 5.5 ± 2.5% (ranging from 2.3 to 9.4%). PFE was observed in nine of the ten bundles, averaging 11.1 ± 6.5% (ranging from -2.1 to 18.7%). Stiffness was not different between the active isometric and the force enhanced conditions, but was higher following deactivation from the force-enhanced compared to the isometric reference state. We conclude that there is RFE and PFE in cardiac muscle. We speculate that cardiac muscle has the same RFE capability as skeletal muscle, and that the most likely mechanism for the RFE and PFE is the engagement of a passive structural element during active stretching.


Asunto(s)
Contracción Isométrica , Sarcómeros , Fenómenos Mecánicos , Contracción Muscular , Músculo Esquelético , Miocardio
18.
Appl Physiol Nutr Metab ; 45(8): 893-901, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32134688

RESUMEN

Childhood obesity is a major risk factor for heart disease during adulthood, independent of adulthood behaviours. Therefore, it seems that childhood obesity leads to partly irreversible decrements in cardiac function. Little is known about how obesity during maturation affects the mechanical properties of the heart. The purpose of this study was to evaluate contractile properties in developing hearts from animals with dietary-induced obesity (high-fat high-sucrose diet). We hypothesized that obesity induced during adolescence results in decrements in cardiac contractile function. Three-week-old rats (n = 16) were randomized into control (chow) or dietary-induced obesity (high-fat high-sucrose diet) groups. Following 14 weeks on the diet, skinned cardiac trabeculae fibre bundle testing was performed to evaluate active and passive force, maximum shortening velocity, and calcium sensitivity. Rats in the high-fat high-sucrose diet group had significantly larger body mass and total body fat percentage. There were no differences in maximal active or passive properties of hearts between groups. Hearts from the high-fat high-sucrose diet rats had significantly slower maximum shortening velocities and lower calcium sensitivity than controls. Decreased shortening velocity and calcium sensitivity in hearts of obese animals may constitute increased risk of cardiac disease in adulthood. Novelty Cardiac muscle from animals exposed to an obesogenic diet during development had lower shortening velocity and calcium sensitivity than those from animals fed a chow diet. These alterations in mechanical function may be a mechanism for the increased risk of cardiac disease observed in adulthood.


Asunto(s)
Corazón/fisiopatología , Obesidad/fisiopatología , Adiposidad , Animales , Peso Corporal , Calcio , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta , Sacarosa en la Dieta , Masculino , Contracción Miocárdica , Miocardio/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
19.
Front Physiol ; 11: 567538, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536930

RESUMEN

Muscle force is enhanced during shortening when shortening is preceded by an active stretch. This phenomenon is known as the stretch-shortening cycle (SSC) effect. For some stretch-shortening conditions this increase in force during shortening is maintained following SSCs when compared to the force following a pure shortening contraction. It has been suggested that the residual force enhancement property of muscles, which comes into play during the stretch phase of SSCs may contribute to the force increase after SSCs. Knowing that residual force enhancement is associated with a substantial reduction in metabolic energy per unit of force, it seems reasonable to assume that the metabolic energy cost per unit of force is also reduced following a SSC. The purpose of this study was to determine the energy cost per unit of force at steady-state following SSCs and compare it to the corresponding energy cost following pure shortening contractions of identical speed and magnitude. We hypothesized that the energy cost per unit of muscle force is reduced following SSCs compared to the pure shortening contractions. For the SSC tests, rabbit psoas fibers (n = 12) were set at an average sarcomere length (SL) of 2.4 µm, activated, actively stretched to a SL of 3.2 µm, and shortened to a SL of 2.6 or 3.0 µm. For the pure shortening contractions, the same fibers were activated at a SL of 3.2 µm and actively shortened to a SL of 2.6 or 3.0 µm. The amount of ATP consumed was measured over a 40 s steady-state total isometric force following either the SSCs or the pure active shortening contractions. Fiber stiffness was determined in an additional set of 12 fibers, at steady-state for both experimental conditions. Total force, ATP consumption, and stiffness were greater following SSCs compared to the pure shortening contractions, but ATP consumption per unit of force was the same between conditions. These results suggest that the increase in total force observed following SSCs was achieved with an increase in the proportion of attached cross-bridges and titin stiffness. We conclude that muscle efficiency is not enhanced at steady-state following SSCs.

20.
J Orthop Surg Res ; 14(1): 187, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227002

RESUMEN

BACKGROUND: Cerebral palsy (CP) is the most common cause of childhood disability, typified by a static encephalopathy with peripheral musculoskeletal manifestations-most commonly related to spasticity-that are progressive with age. Hip displacement is one of the most common manifestations, observed to lead to painful degenerative arthritis over time. Despite the key role that spasticity-related adductor muscle contractures are thought to play in the development of hip displacement in CP, basic science research in this area to date has been limited. This study was initiated to correlate hip adductor muscle changes intrinsic to the sarcomere-specifically, titin isoforms and sarcomere length-to the severity of hip displacement in children with spastic cerebral palsy. METHODS: Single gracilis muscle biopsies were obtained from children with CP (Gross Motor Function Classification System (GMFCS) III-V; n = 10) who underwent adductor muscle release surgery for the treatment of hip displacement. Gel electrophoresis was used to estimate titin molecular weight. Sarcomere lengths were measured from muscle fascicles using laser diffraction. The severity of hip displacement was determined by measuring by Reimers migration percentage (MP) from anteroposterior pelvic x-rays. Correlation analyses between titin, sarcomere lengths, and MP were performed. RESULTS: The mean molecular weight of titin was 3588 kDa. The mean sarcomere length was 3.51 µm. Increased MP was found to be associated with heavier isoforms of titin (R2 = 0.65, p < 0.05) and with increased sarcomere lengths (R2 = 0.65, p < 0.05). Heavier isoforms of titin were also associated with increased sarcomere lengths (R2 = 0.80, p < 0.05). CONCLUSIONS: Our results suggest that both larger titin isoforms and sarcomere lengths are positively correlated with increased severity of hip displacement and may represent adaptations in response to concomitant increases in spasticity and muscle shortening. TRIAL REGISTRATION: As this study does not report the results of a health care intervention on human participants, it has not been registered.


Asunto(s)
Parálisis Cerebral/patología , Luxación de la Cadera/etiología , Músculo Esquelético/patología , Sarcómeros/patología , Biopsia , Parálisis Cerebral/complicaciones , Niño , Preescolar , Femenino , Músculo Grácil/patología , Luxación de la Cadera/patología , Humanos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...