Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 256: 104168, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948021

RESUMEN

Ground surface analysis of CO2 emissions with δ13C determination is experimentally demonstrated to be a potential methodology to monitor, on line, the dynamics of petroleum-hydrocarbon biodegradation in soil aquifers, thanks to the improvement of the Isotopic Ratio Infra Red Spectroscopy technique. Biodegradation rate of remaining hydrocarbon substrates in groundwater can be quantified using basic application of the Rayleigh equations, by δ13CCO2 analysis released at ground surface above the pollution plume instead of usual approaches based on groundwater hydrocarbons δ13C analysis, when physical and chemical properties for the contaminated site meet appropriate conditions. The validation approach for that gasoline contaminated specific site is discussed and verified by comparison of first order attenuation rate constant determined from δ13CCO2 analysis emitted at ground surface and from δ13CTOLUENE analysis in ground water. A kinetic fractionation factor α of 0.9979 (or ε value of -2.1 ± 0.5‰) is estimated for the biodegradation of the most reactive hydrocarbon substrates (TEX). The treatment of this Rayleigh equations by linear regression of δ13CCO2 values along the predominant direction of groundwater flow leads to the following results and conclusions for that site: (i) first order biodegradation rate constants (and annual variation) are maximum after the activation of a Permeable Reactive Barrier (PRB) in May 2014: 0.92(+0.29-0.17) year-1, and during July and October: 0.46(+0.14-0.09) year-1 and minimum in mid-winter in February 2015: 0.17(+0.05-0.03) year-1, given by the estimation range for ε. These results are in the lower range with reported in literature for similar contaminated sites (1.6-18 year-1) considering natural attenuation under sulfate reducing conditions and (ii) the seasonal variation of the first order biodegradation rate constant is mainly correlated with the seasonal variation of the CO2 flux, where maximum values are in summers and minimum values in winters. Both seasonal variations are mainly due to the annual cycle of the natural biodegradation activity at the scale of the pollution plume, rather than the activation of the PRB. This work demonstrates that δ13CCO2 analysis released at ground surface from biodegradation of groundwater hydrocarbons could provide, under characterized and appropriate conditions, a non-intrusive (without soil samplings), fast, and low-cost online method to monitor and therefore to optimize soil remediation processes in real time. (Monitored Natural Attenuation or Enhanced Bioremediation).


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Dióxido de Carbono/análisis , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis , Hidrocarburos/análisis , Suelo
2.
Nat Commun ; 4: 1891, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695685

RESUMEN

Amyloid fibrils are self-assembled protein aggregates implicated in a number of human diseases. Fragmentation-dominated models for the self-assembly of amyloid fibrils have had important successes in explaining the kinetics of amyloid fibril formation but predict fibril length distributions that do not match experiments. Here we resolve this inconsistency using a combination of experimental kinetic measurements and computer simulations. We provide evidence for a structural transition that occurs at a critical fibril mass concentration, or CFC, above which fragmentation of fibrils is suppressed. Our simulations predict the formation of distinct fibril length distributions above and below the CFC, which we confirm by electron microscopy. These results point to a new picture of amyloid fibril growth in which structural transitions that occur during self-assembly have strong effects on the final population of aggregate species with small, and potentially cytotoxic, oligomers dominating for long periods of time at protein concentrations below the CFC.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Animales , Bovinos , Simulación por Computador , Humanos , Insulina/química , Insulina/metabolismo , Cinética , Modelos Moleculares , Peso Molecular , Estructura Cuaternaria de Proteína , Cloruro de Sodio/farmacología , Factores de Tiempo
3.
Environ Monit Assess ; 154(1-4): 85-92, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18551372

RESUMEN

A major aircraft experiment Transport and Chemical Evolution over the Pacific (TRACE-P) mission over the NW Pacific in March-April 2001 was conducted to better understand how outflow from the Asian continent affects the composition of the global atmosphere. In this paper, a global climate model, GEOS-Chem is used to investigate possible black carbon aerosol contributions from TRACE-P region. Our result depicts that absorbing black carbon ("soot") significantly outflow during lifting to the free troposphere through warm conveyor belt and convection associated with this lifting. The GEOS-Chem simulation results show significant transport of black carbon aerosols from Asian regions to the Western Pacific region during the spring season. As estimated by GEOS-Chem simulations, approximately 25% of the black carbon concentrations over the western pacific originate from SE Asia in the spring.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Carbono/análisis , Geografía , Modelos Teóricos , Océano Pacífico , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA