Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 593(7857): 74-82, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953415

RESUMEN

The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2-8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.

2.
Mar Pollut Bull ; 61(7-12): 413-31, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20708202

RESUMEN

The local climate and island-scale circulation around New Caledonia is investigated using a 4-km resolution mesoscale atmospheric model in concert with QuikSCAT scatterometer winds at 12.5-km resolution. The mesoscale atmospheric weather regimes are first examined through an objective classification applied to the remote sensed winds for nine warm seasons from 1999 to 2008. Four main weather types are identified. Their corresponding synoptic-scale circulation reveals that they are strongly discernable through the position and intensity of the South Pacific Convergence zone (SPCZ), the mid-latitude systems, and the subtropical jet stream. The link between the mesoscale weather types and the two dominant large-scale modes of variability, namely the Madden-Julian Oscillation (MJO) and the El Niño-Southern Oscillation (ENSO), is also described in terms of their influence on the occurrence of each weather type. It shows that their occurrence is significantly controlled by both MJO and ENSO, through modulation of the SPCZ. The large-scale modes of variability are scaled down to island-scale circulation through synoptic and mesoscale regimes, and are eventually modulated by orographic and thermal control. The island-scale circulation is inferred in this study by applying the compositing method to both observed and simulated winds. Their comparison clearly shows the ability of the mesoscale model to capture the local circulation and its spatial and temporal variability. A scaling analysis conducted from the simulated atmospheric parameters shows that the mountain range of New Caledonia is hydrodynamically steep. As a result of trade-wind obstruction by the mountainous island, the flow is shaped by coastally trapped mesoscale responses, i.e., blocking, flow splitting and corner winds, with a spatial scale of about 150 km. Two main obstacles, Mont Panié and Mont Humboldt play a significant role on the dynamical behavior of the low-level flow, while the diurnal heating cycle in the vicinity of the Mainland strongly modulates the local circulation. Moreover, nocturnal drainage flow of cold air occurs on the leeside slope of Mont Humboldt and inhibits vertical mixing over the ocean, which results in a deceleration of surface winds.


Asunto(s)
Monitoreo del Ambiente , Tiempo (Meteorología) , Viento , Geografía , Modelos Teóricos , Nueva Caledonia , Reproducibilidad de los Resultados , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...