Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Nephrol ; 3: 1138416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675364

RESUMEN

Objective: This study assessed the efficacy of INV-202, a novel peripherally restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a streptozotocin-induced type-1 diabetes nephropathy mouse model. Methods: Diabetes was induced in 8-week-old C57BL6/J male mice via intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days); nondiabetic controls received citrate buffer. Diabetic mice were randomized to 3 groups based on blood glucose, polyuria, and albuminuria, and administered daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle. Results: INV-202 did not affect body weight but decreased kidney weight compared with the vehicle group. While polyuria was unaffected by INV-202 treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202 (0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin (control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ± 88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased compared with vehicle-treated diabetic mice. Compared with the vehicle group, there was a significant improvement in the urinary albumin to creatinine ratio across INV-202 groups. Regardless of the dose, INV-202 significantly reduced angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a renal expression in a dose-dependent manner. Compared with nondiabetic controls, the glomerular filtration rate was increased in the vehicle group and significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a significant loss in the mean number of podocytes per glomerulus, INV-202 treatment limited podocyte loss in a dose-dependent manner. Moreover, in both INV-202 groups, expression of genes coding for podocyte structural proteins nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels similar to nondiabetic controls. INV-202 partially limited the proximal tubular epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC lesions. INV-202 also reduced expression of genes contributing to oxidative stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-induced renal fibrosis was significantly reduced by INV-202. Conclusions: INV-202 reduced glomerular injury, preserved podocyte structure and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a streptozotocin-induced diabetic nephropathy mouse model. These results suggest that INV-202 may represent a new therapeutic option in the treatment of diabetic kidney disease.

2.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660921

RESUMEN

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

3.
iScience ; 26(7): 107207, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534180

RESUMEN

Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and ß-arrestin1 but is independent of changes in cAMP. Moreover, ß-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in ß-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, ß-arrestin1 or TC-PTP. Altogether, CB1R activation engages ß-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.

4.
Drug Alcohol Depend ; 245: 109809, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822122

RESUMEN

Growing evidence indicates that the crosstalk between the central nervous system and the periphery plays an important role in the pathophysiology of neuropsychiatric conditions, including addictive disorders. Fibroblast growth factor 21 (FGF21) is part of the liver-brain axis and regulates energy homeostasis, metabolism, and macronutrient intake. In addition, FGF21 signaling modulates alcohol intake and preference, and changes in FGF21 levels are observed following alcohol consumption. To further elucidate the relationship between alcohol use and FGF21, we assessed serum FGF21 concentrations in 16 non-treatment seeking individuals with alcohol use disorder (AUD) in a naturalistic outpatient setting, as well as a controlled laboratory experiment that included alcohol cue-reactivity, alcohol priming, and alcohol self-administration in a bar-like setting. FGF21 levels were stable during the outpatient phase when participants received placebo and had no significant lifestyle changes. During the bar-like laboratory experiment, a robust increase in serum FGF21 concentrations was found after the 2-hr alcohol self-administration session (F3, 49 = 23.39, p < 0.001). Percent change in FGF21 levels positively correlated with the amount of alcohol self-administered but did not reach statistical significance. No significant changes in FGF21 levels were found after exposure to alcohol cues or consuming the priming drink. Given the bidirectional link between FGF21 and alcohol, targeting the FGF21 system may be further examined as a potential pharmacotherapy for AUD.


Asunto(s)
Alcoholismo , Humanos , Consumo de Bebidas Alcohólicas , Factores de Crecimiento de Fibroblastos/metabolismo , Etanol
5.
Cell Death Dis ; 13(9): 758, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056008

RESUMEN

Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-ß receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-ß receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-ß receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-ß receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Elongasas de Ácidos Grasos/metabolismo , Neoplasias Pulmonares , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal , Femenino , Humanos , Lípidos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Metástasis de la Neoplasia , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328343

RESUMEN

Targeting cannabinoid 1 receptors (CB1R) with peripherally restricted antagonists (or inverse agonists) shows promise to improve metabolic disorders associated with obesity. In this context, we designed and synthetized JM-00266, a new CB1R blocker with limited blood-brain barrier (BBB) permeability. Pharmacokinetics were tested with SwissADME and in vivo in rodents after oral and intraperitoneal administration of JM-00266 in comparison with Rimonabant. In silico predictions indicated JM-00266 is a non-brain penetrant compound and this was confirmed by brain/plasma ratios and brain uptake index values. JM-00266 had no impact on food intake, anxiety-related behavior and body temperature suggesting an absence of central activity. cAMP assays performed in CB1R-transfected HEK293T/17 cells showed that the drug exhibited inverse agonist activity on CB1R. In addition, JM-00266 counteracted anandamide-induced gastroparesis indicating substantial peripheral activity. Acute administration of JM-00266 also improved glucose tolerance and insulin sensitivity in wild-type mice, but not in CB1R-/- mice. Furthermore, the accumulation of JM-00266 in adipose tissue was associated with an increase in lipolysis. In conclusion, JM-00266 or derivatives can be predicted as a new candidate for modulating peripheral endocannabinoid activity and improving obesity-related metabolic disorders.


Asunto(s)
Antagonistas de Receptores de Cannabinoides , Enfermedades Metabólicas , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Células HEK293 , Humanos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides
10.
Front Endocrinol (Lausanne) ; 12: 716431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434170

RESUMEN

White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.


Asunto(s)
Tejido Adiposo Blanco/patología , Endocannabinoides/metabolismo , Metabolismo de los Lípidos , Lipólisis , Obesidad/patología , Receptor Cannabinoide CB1/metabolismo , Delgadez/patología , Tejido Adiposo Blanco/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Ratas , Delgadez/metabolismo
11.
Clin Transl Med ; 11(7): e471, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34323400

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Asunto(s)
Síndrome de Hermanski-Pudlak/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fibrosis Pulmonar/patología , Receptor Cannabinoide CB1/metabolismo , Adulto , Animales , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Ácidos Araquidónicos/metabolismo , Bleomicina/efectos adversos , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Síndrome de Hermanski-Pudlak/complicaciones , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Interleucina-11/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Alcamidas Poliinsaturadas/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/tratamiento farmacológico , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Factor de Crecimiento Transformador beta1/metabolismo
12.
ACS Pharmacol Transl Sci ; 4(3): 1175-1187, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34151207

RESUMEN

Seven-transmembrane receptors signal via G-protein- and ß-arrestin-dependent pathways. We describe a peripheral CB1R antagonist (MRI-1891) highly biased toward inhibiting CB1R-induced ß-arrestin-2 (ßArr2) recruitment over G-protein activation. In obese wild-type and ßArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CB1R occupancy. By contrast, the unbiased global CB1R antagonist rimonabant elicits anxiety in both strains, indicating no ßArr2 involvement. Interestingly, obesity-induced muscle insulin resistance is improved by MRI-1891 in wild-type but not in ßArr2-KO mice. In C2C12 myoblasts, CB1R activation suppresses insulin-induced akt-2 phosphorylation, preventable by MRI-1891, ßArr2 knockdown or overexpression of CB1R-interacting protein. MRI-1891, but not rimonabant, interacts with nonpolar residues on the N-terminal loop, including F108, and on transmembrane helix-1, including S123, a combination that facilitates ßArr2 bias. Thus, CB1R promotes muscle insulin resistance via ßArr2 signaling, selectively mitigated by a biased CB1R antagonist at reduced risk of central nervous system (CNS) side effects.

13.
J Lipid Res ; 62: 100013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518513

RESUMEN

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa
14.
Methods Mol Biol ; 2164: 45-53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32607882

RESUMEN

Kupffer cells are the liver-resident macrophages and represent the first line of defense between the pathogens circulating from the intestines through the portal vein and systemic circulation. Recent works have highlighted the complex heterogeneity of macrophage functions and origins, thus raising awareness on the need for a better characterization of macrophage populations. The immunohistochemistry method here described, allows for a rapid distinction between Kupffer cells and monocyte-derived macrophages present on formalin-fixed, paraffin-embedded mouse liver samples. This protocol has been optimized for its reproducibility, reliability, and simplicity.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Formaldehído/química , Macrófagos del Hígado/citología , Macrófagos/citología , Adhesión en Parafina/métodos , Fijación del Tejido/métodos , Animales , Inmunohistoquímica/métodos , Hígado/citología , Ratones , Reproducibilidad de los Resultados
15.
Diabetes ; 69(10): 2120-2132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32680936

RESUMEN

Diabetic dyslipidemia, characterized by increased plasma triglycerides and decreased HDL cholesterol levels, is a major factor contributing to nonalcoholic steatohepatitis and cardiovascular risk in type 2 diabetes. Activation of the cannabinoid-1 receptor (CB1R) and activation of inducible nitric oxide synthase (iNOS) are associated with nonalcoholic steatohepatitis progression. Here, we tested whether dual-targeting inhibition of hepatic CB1R and iNOS improves diabetic dyslipidemia in mice with diet-induced obesity (DIO mice). DIO mice were treated for 14 days with (S)-MRI-1867, a peripherally restricted hybrid inhibitor of CB1R and iNOS. (R)-MRI-1867, the CB1R-inactive stereoisomer that retains iNOS inhibitory activity, and JD-5037, a peripherally restricted CB1R antagonist, were used to assess the relative contribution of the two targets to the effects of (S)-MRI-1867. (S)-MRI-1867 reduced hepatic steatosis and the rate of hepatic VLDL secretion, upregulated hepatic LDLR expression, and reduced the circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9). The decrease in VLDL secretion could be attributed to CB1R blockade, while the reduction of PCSK9 levels and the related increase in LDLR resulted from iNOS inhibition via an mTOR complex 1-dependent mechanism. In conclusion, this approach based on the concomitant inhibition of CB1R and iNOS represents a promising therapeutic strategy for the treatment of dyslipidemia.


Asunto(s)
Dislipidemias/metabolismo , Hígado/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Obesidad/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Células Cultivadas , Glucosa , Hepatocitos/metabolismo , Immunoblotting , Metabolismo de los Lípidos/fisiología , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Proc Natl Acad Sci U S A ; 116(51): 25974-25981, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792171

RESUMEN

Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for detoxification the ethanol metabolite acetaldehyde, is recognized as a promising therapeutic target to treat alcohol use disorders (AUDs). Disulfiram, a potent ALDH2 inhibitor, is an approved drug for the treatment of AUD but has clinical limitations due to its side effects. This study aims to elucidate the relative contribution of different organs in acetaldehyde clearance through ALDH2 by using global- (Aldh2-/-) and tissue-specific Aldh2-deficient mice, and to examine whether liver-specific ALDH2 inhibition can prevent alcohol-seeking behavior. Aldh2-/- mice showed markedly higher acetaldehyde concentrations than wild-type (WT) mice after acute ethanol gavage. Acetaldehyde levels in hepatocyte-specific Aldh2 knockout (Aldh2Hep-/-) mice were significantly higher than those in WT mice post gavage, but did not reach the levels observed in Aldh2-/- mice. Energy expenditure and motility were dramatically dampened in Aldh2-/- mice, but moderately decreased in Aldh2Hep-/- mice compared to controls. In the 2-bottle paradigm and the drinking-in-the-dark model, Aldh2-/- mice drank negligible volumes from ethanol-containing bottles, whereas Aldh2Hep-/- mice showed reduced alcohol preference at high but not low alcohol concentrations. Glial cell- or neuron-specific Aldh2 deficiency did not affect voluntary alcohol consumption. Finally, specific liver Aldh2 knockdown via injection of shAldh2 markedly decreased alcohol preference. In conclusion, although the liver is the major organ responsible for acetaldehyde metabolism, a cumulative effect of ALDH2 from other organs likely also contributes to systemic acetaldehyde clearance. Liver-targeted ALDH2 inhibition can decrease heavy drinking without affecting moderate drinking, providing molecular basis for hepatic ALDH2 targeting/editing for the treatment of AUD.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Aldehído Deshidrogenasa Mitocondrial/efectos de los fármacos , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Etanol/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Acetaldehído/metabolismo , Alanina Transaminasa/sangre , Alcoholismo/genética , Alcoholismo/metabolismo , Animales , Quimiocina CCL2/metabolismo , Eliminación de Gen , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía , Neuronas/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
17.
Cell Metab ; 29(6): 1320-1333.e8, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31105045

RESUMEN

Endocannabinoids acting on the cannabinoid-1 receptor (CB1R) or ghrelin acting on its receptor (GHS-R1A) both promote alcohol-seeking behavior, but an interaction between the two signaling systems has not been explored. Here, we report that the peripheral CB1R inverse agonist JD5037 reduces ethanol drinking in wild-type mice but not in mice lacking CB1R, ghrelin peptide or GHS-R1A. JD5037 treatment of alcohol-drinking mice inhibits the formation of biologically active octanoyl-ghrelin without affecting its inactive precursor desacyl-ghrelin. In ghrelin-producing stomach cells, JD5037 reduced the level of the substrate octanoyl-carnitine generated from palmitoyl-carnitine by increasing fatty acid ß-oxidation. Blocking gastric vagal afferents abrogated the ability of either CB1R or GHS-R1A blockade to reduce ethanol drinking. We conclude that blocking CB1R in ghrelin-producing cells reduces alcohol drinking by inhibiting the formation of active ghrelin and its signaling via gastric vagal afferents. Thus, peripheral CB1R blockade may have therapeutic potential in the treatment of alcoholism.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Encéfalo/fisiología , Intestinos/fisiología , Receptor Cannabinoide CB1/genética , Aciltransferasas/genética , Aciltransferasas/fisiología , Consumo de Bebidas Alcohólicas/fisiopatología , Alcoholismo/genética , Alcoholismo/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Células Cultivadas , Eliminación de Gen , Ghrelina/metabolismo , Ghrelina/fisiología , Intestinos/efectos de los fármacos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sulfonamidas/farmacología
18.
Hepatology ; 69(4): 1535-1548, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30506571

RESUMEN

Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure. Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver. Exposure of primary mouse hepatocytes and HepG2 cells to the CB1 R agonist arachidonyl-2'-chloroethylamide inhibited the expression of Sirtuin-1 (Sirt1) and Rictor, a component of mechanistic target of rapamycin complex 2 (mTORC2) and suppressed insulin-induced Akt phosphorylation at serine 473. These effects were reversed by peripheral CB1 R antagonist JD5037 in control hepatocytes but not in hepatocytes deficient in Sirt1 and/or Rictor, indicating that these two proteins are required for the CB1 R-mediated inhibition of insulin signaling. Feeding C57BL/6J mice a high-fat diet (HFD) inhibited hepatic Sirt1/mTORC2/Akt signaling, and the inhibition was reversed by rimonabant or JD5037 in wild-type but not liver-specific Sirt1-/- (Sirt1-LKO) mice, to levels observed in hepatocyte-specific CB1 R-/- mice. A similar attenuation of hyperglycemia and hyperinsulinemia in wild-type mice with obesity but not in Sirt1-LKO mice could be attributed to insufficient reversal of HFD-induced mitochondrial reactive oxygen species generation in peripheral tissues in the latter. In contrast, JD5037 treatment was equally effective in HFD-fed wild-type and Sirt1-LKO mice in reducing hepatic steatosis, increasing fatty acid ß-oxidation, and activating 5'adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1), resulting in a similar increase in total energy expenditure in the two strains. Conclusion: Peripheral CB1 R blockade in mice with obesity improves glycemic control through the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation through LKB1/AMPK signaling.


Asunto(s)
Resistencia a la Insulina , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Sulfonamidas/farmacología , Adenilato Quinasa/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
19.
Hepatology ; 68(4): 1519-1533, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631342

RESUMEN

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Asunto(s)
Lesión Renal Aguda/metabolismo , Arginina/metabolismo , Síndrome Hepatorrenal/patología , Túbulos Renales/patología , Óxido Nítrico Sintasa/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Biomarcadores/metabolismo , Biopsia con Aguja , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndrome Hepatorrenal/mortalidad , Síndrome Hepatorrenal/fisiopatología , Humanos , Inmunohistoquímica , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Medición de Riesgo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
20.
Diabetes Obes Metab ; 20(3): 698-708, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29106063

RESUMEN

AIMS: To determine the specific role of podocyte-expressed cannabinoid-1 receptor (CB1 R) in the development of diabetic nephropathy (DN), relative to CB1 R in other renal cell types. MATERIAL AND METHODS: We developed a mouse model with a podocyte-specific deletion of CB1 R (pCB1Rko) and challenged this model with streptozotocin (STZ)-induced type-1 DN. We also assessed the podocyte response to high glucose in vitro and its effects on CB1 R activation. RESULTS: High glucose exposure for 48 hours led to an increase in CB1 R gene expression (CNR1) and endocannabinoid production in cultured human podocytes. This was associated with podocyte injury, reflected by decreased podocin and nephrin expression. These changes could be prevented by Cnr1-silencing, thus identifying CB1R as a key player in podocyte injury. After 12 weeks of chronic hyperglycaemia, STZ-treated pCB1Rko mice showed elevated blood glucose similar to that of their wild-type littermates. However, they displayed less albuminuria and less podocyte loss than STZ-treated wild-type mice. Unexpectedly, pCB1Rko mice also have milder tubular dysfunction, fibrosis and reduction of cortical microcirculation compared to wild-type controls, which is mediated, in part, by podocyte-derived endocannabinoids acting via CB1 R on proximal tubular cells. CONCLUSIONS: Activation of CB1 R in podocytes contributes to both glomerular and tubular dysfunction in type-1 DN, which highlights the therapeutic potential of peripheral CB1 R blockade.


Asunto(s)
Nefropatías Diabéticas/fisiopatología , Glomérulos Renales/fisiología , Túbulos Renales Proximales/fisiología , Podocitos/metabolismo , Receptores de Cannabinoides/deficiencia , Animales , Arginasa/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatología , Glucosa/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/irrigación sanguínea , Proteínas de la Membrana/metabolismo , Ratones , Microcirculación/fisiología , Estrés Oxidativo/fisiología , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...