Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 346: 114404, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37940008

RESUMEN

Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.


Asunto(s)
Ardillas Terrestres , Hormona de Crecimiento Humana , Perciformes , Animales , Hormona del Crecimiento/metabolismo , Privación de Alimentos/fisiología , Factor de Transcripción STAT5/metabolismo , Ardillas Terrestres/genética , Ardillas Terrestres/metabolismo , Hígado/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hormona de Crecimiento Humana/metabolismo , Perciformes/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Peces/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Músculo Esquelético/metabolismo , ARN Mensajero/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37201654

RESUMEN

Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver 2-4 d after eating. Transcripts encoding igf1also increased in the liver of refed fish by 4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.


Asunto(s)
Lubina , Factor I del Crecimiento Similar a la Insulina , Animales , Lubina/metabolismo , Ayuno/fisiología , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo
3.
Mol Cell Endocrinol ; 573: 111951, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169322

RESUMEN

Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) affects Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.


Asunto(s)
Ardillas Terrestres , Perciformes , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Estado Nutricional , Ardillas Terrestres/metabolismo , Proteolisis , Miostatina/genética , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Peces/metabolismo , Desarrollo de Músculos/genética
4.
Gen Comp Endocrinol ; 286: 113319, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31715138

RESUMEN

The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.


Asunto(s)
Privación de Alimentos/fisiología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transcripción Genética/genética , Animales , Peces
5.
Fish Physiol Biochem ; 45(6): 1867-1878, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31297680

RESUMEN

Monitoring the growth of salmon during their early marine phase provides insights into prey availability, and growth rates may be linked to risks of size-dependent mortality. However, the measurement of growth rate is challenging for free-living salmon in the ocean. Insulin-like growth factor (IGF)-I is a growth-promoting hormone that is emerging as a useful index of growth in salmon. In addition, laboratory-based studies using coho salmon have shown that one of circulating IGF-binding proteins (IGFBPs), IGFBP-1b, is induced by fasting and thus could be used as an inverse index of growth and/or catabolic state in salmon. However, few studies have measured plasma levels of IGFBP-1b in salmon in the wild. We measured plasma IGFBP-1b levels for postsmolt coho salmon collected in the Strait of Georgia and surrounding waters, British Columbia, Canada, and compared regional differences in IGFBP-1b to ecological information such as seawater temperature and stomach fullness. Plasma IGFBP-1b levels were the highest in fish from Eastern Johnstone Strait and relatively high in Queen Charlotte Strait and Western Johnstone Strait, which was in good agreement with the poor ocean conditions for salmon hypothesized to occur in that region. The molar ratio of plasma IGF-I to IGFBP-1b, a theoretical parameter of IGF-I availability to the receptor, discriminated differences among regions better than IGF-I or IGFBP-1b alone. Our data suggest that plasma IGFBP-1b reflects catabolic status in postsmolt coho salmon, as highlighted in fish in Eastern Johnston Strait, and is a useful tool to monitor negative aspects of salmon growth in the ocean.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Oncorhynchus kisutch/crecimiento & desarrollo , Animales , Colombia Británica , Geografía , Factor I del Crecimiento Similar a la Insulina/análisis , Oncorhynchus kisutch/sangre , Estrés Fisiológico
6.
Gen Comp Endocrinol ; 280: 168-184, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31022390

RESUMEN

Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.


Asunto(s)
Ayuno/fisiología , Privación de Alimentos/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Perciformes/metabolismo , Animales , Glucemia/metabolismo , Tamaño Corporal , Peso Corporal , ADN Complementario/genética , Conducta Alimentaria , Concentración de Iones de Hidrógeno , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Iones , Hígado/metabolismo , Músculos/metabolismo , Estado Nutricional , Perciformes/anatomía & histología , Perciformes/sangre , Perciformes/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-29879485

RESUMEN

Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish.


Asunto(s)
Proteínas de Peces/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Estado Nutricional , Perciformes/crecimiento & desarrollo , Perciformes/fisiología , Alimentación Animal , Animales , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Perciformes/genética , ARN Mensajero/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA