Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
JCI Insight ; 9(6)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516887

RESUMEN

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.


Asunto(s)
Proteína HMGA2 , Síndrome de Silver-Russell , Animales , Humanos , Ratones , Secuencia de Bases , Trastornos del Crecimiento/genética , Proteína HMGA2/genética , Fenotipo , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico
2.
Horm Res Paediatr ; 97(1): 11-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37054683

RESUMEN

Current clinical guidelines provide information about the diagnostic workup of children with growth failure. This mini-review focuses on the nutritional assessment, which has received relatively little attention in such guidelines. The past medical history, in particular a low birth size and early feeding problems, can provide information that can increase the likelihood of nutritional deficits or several genetic causes. The current medical history should include a dietary history and can thereby reveal a poorly planned or severely restricted diet, which can be associated with nutritional deficiencies. Children on a vegan diet should receive various nutritional supplements, but insufficient compliance has been reported in one-third of cases. While proper use of nutritional supplements in children consuming a vegan diet appears to be associated with normal growth and development, insufficient intake of supplements may impede growth and bone formation. Physical examination and analysis of height and weight over time can help differentiating between endocrine causes, gastrointestinal disorders, psychosocial problems, or underlying genetic conditions that prevent adequate nutritional intake. Laboratory screening should be part of the workup in every child with short stature, and further laboratory tests can be indicated if warranted by the dietary history, especially in children on a poorly planned vegan diet.


Asunto(s)
Desnutrición , Estado Nutricional , Niño , Humanos , Dieta Vegetariana , Dieta Vegana , Suplementos Dietéticos , Insuficiencia de Crecimiento/diagnóstico
3.
Eur J Endocrinol ; 188(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36651155

RESUMEN

Idiopathic short stature (ISS) is a diagnosis of exclusion, and therefore each child with short stature or slow growth referred to a paediatrician deserves a full medical history and physical examination, as well as radiological and laboratory screening tests. In patients with an increased likelihood of a genetic cause, genetic testing is indicated. Idiopathic short stature is an approved indication for recombinant human growth hormone (rhGH) in the USA but not in most other parts of the world. In a recent article published in this journal, Luo et al reported on the 1-year's results of a multicentre randomized controlled trial (n = 360) on the efficacy and safety of two dosages of long-acting PEGylated rhGH (PEG-rhGH, Jintrolong®) (0.1 or 0.2 mg/kg body weight per week, respectively) in children with ISS compared with an untreated control group. The growth response to the higher dosage was similar to reported data on daily rhGH. In this commentary, we discuss whether the recent data on genetic causes of short stature in children who initially were labelled ISS, and data on the long-term safety of daily rhGH, may influence the balance between risks and benefits of rhGH treatment in children with ISS. We further discuss the pharmacokinetic and -dynamic profile of PEG-rhGH and its potential consequences for long-term safety.


Asunto(s)
Enanismo , Hormona de Crecimiento Humana , Humanos , Niño , Hormona de Crecimiento Humana/uso terapéutico , Hormona del Crecimiento , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/tratamiento farmacológico , Enanismo/diagnóstico , Enanismo/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Polietilenglicoles/uso terapéutico , Estatura
4.
J Clin Res Pediatr Endocrinol ; 15(4): 431-437, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-35466665

RESUMEN

IGSF1 deficiency is a rare X-linked condition characterized by central hypothyroidism and a wide variety of other clinical features with variable prevalence, including a delayed pubertal testosterone rise and growth spurt in the context of normal or accelerated testicular growth, and adult macroorchidism with relatively low serum testosterone concentrations. Other features include increased waist circumference, attention deficit, prolactin deficiency and transient partial growth hormone (GH) deficiency in childhood, contrasting with an increased GH secretion in adulthood. Patients with this disorder are not detected shortly after birth if neonatal screening programs are based on thyroid-stimulating hormone (TSH) concentrations. A 13.2-year-old male patient was referred to pediatric endocrinology for evaluation of short stature. He was born large for gestational age into a nonconsanguineous family. During work-up for short stature, deficiencies of TSH, prolactin and GH were detected, leading to treatment with levothyroxine and GH. At 16.9 years, GH treatment was stopped and during transition to adult care, his insulin-like growth factor 1 level was above the normal range. This prompted an analysis of IGSF1, in which a novel hemizygous variant causing a stop codon at c.3559C>T (p.Q1187*) was found, confirming the diagnosis of IGSF1 deficiency syndrome. In this report, we describe his clinical and hormonal characteristics at presentation and during long-term follow-up.


Asunto(s)
Enanismo Hipofisario , Hipotiroidismo , Transición a la Atención de Adultos , Adolescente , Humanos , Masculino , Hipotiroidismo/tratamiento farmacológico , Inmunoglobulinas , Factor I del Crecimiento Similar a la Insulina , Proteínas de la Membrana , Prolactina , Testosterona , Tirotropina
5.
Genes (Basel) ; 13(4)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456429

RESUMEN

In recent years, variants in immunoglobulin superfamily member 1 (IGSF1) have been associated with congenital hypopituitarism. Initially, IGSF1 variants were only reported in patients with central hypothyroidism (CeH) and macroorchidism. Later on, IGSF1 variants were also reported in patients with additional endocrinopathies, sometimes without macroorchidism. We studied IGSF1 as a new candidate gene for patients with combined CeH and growth hormone deficiency (GHD). We screened 80 male and 14 female Dutch patients with combined CeH and GHD for variants in the extracellular region of IGSF1, and we report detailed biomedical and clinical data of index cases and relatives. We identified three variants in our patient cohort, of which two were novel variants of unknown significance (p.L570I and c.1765+37C>A). In conclusion, we screened 94 patients with CeH and GHD and found variants in IGSF1 of which p.L570I could be of functional relevance. We provide detailed phenotypic data of two boys with the p.C947R variant and their large family. The remarkable phenotype of some of the relatives sheds new light on the phenotypic spectrum of IGSF1 variants.


Asunto(s)
Hipotiroidismo , Inmunoglobulinas , Femenino , Hormona del Crecimiento , Humanos , Hipotiroidismo/genética , Inmunoglobulinas/genética , Masculino , Proteínas de la Membrana/genética , Mutación , Fenotipo
7.
Horm Res Paediatr ; 94(3-4): 81-104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34091447

RESUMEN

The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 µg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.


Asunto(s)
Enanismo Hipofisario , Enanismo , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/deficiencia , Hipotonía Muscular , Síndrome de Noonan , Columna Vertebral/anomalías , Niño , Preescolar , Diagnóstico Diferencial , Enanismo/diagnóstico , Enanismo/genética , Enanismo/metabolismo , Enanismo Hipofisario/diagnóstico , Enanismo Hipofisario/genética , Enanismo Hipofisario/metabolismo , Hormona de Crecimiento Humana/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Hipotonía Muscular/metabolismo , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Columna Vertebral/metabolismo
8.
J Endocr Soc ; 5(4): bvab023, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33796801

RESUMEN

Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene result in central hypothyroidism, often associated with macroorchidism. Testicular enlargement in these patients might be caused by increases in follicle-stimulating hormone (FSH) levels, as IGSF1 has been proposed to function as an inhibin B receptor or as an inhibitor of activin type I receptor (ALK4) activity in pituitary gonadotrope cells. If true, loss of IGSF1 should lead to reduced inhibin B action or disinhibition of activin signaling, thereby increasing FSH synthesis. Here, we show that FSH levels and sperm counts are normal in male Igsf1 knockout mice, although testis size is mildly increased. Sperm parameters are also normal in men with IGSF1 deficiency, although their FSH levels may trend higher and their testes are enlarged. Inhibin B retains the ability to suppress FSH synthesis in pituitaries of Igsf1-knockout mice and IGSF1 does not interact with ALK4 or alter activin A/ALK4 stimulation of FSHß (Fshb/FSHB) subunit transcription or expression. In light of these results, it is unlikely that macroorchidism in IGSF1 deficiency derives from alterations in spermatogenesis or inhibin/activin regulation of FSH.

9.
J Clin Res Pediatr Endocrinol ; 13(4): 461-467, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33045800

RESUMEN

Our objective was to further expand the spectrum of clinical characteristics of the IGSF1 deficiency syndrome in affected males. These characteristic include almost universal congenital central hypothyroidism (CeH) with disharmonious pubertal development (normally timed testicular growth, but delayed rise of serum testosterone), macroorchidism, increased body mass index (BMI), and decreased attentional control. In addition, a subset of patients show prolactin deficiency, transient partial growth hormone deficiency in childhood and increased growth hormone secretion in adulthood. We present a family in which the proband was diagnosed with CeH and low serum prolactin. Severe weight gain started at two years old, with a BMI of 42.3 at 13.9 years. Testicular enlargement (5-6 mL, 3.8-4.3 standard deviation score) started aged three years. A pathogenic variant was found in the IGSF1 gene: c.3411_3412del, p.(Tyr1137*). His brother was referred for short stature at age 13 years and was diagnosed with CeH, normal serum prolactin and IGF-1, and disharmonious puberty. In four male relatives (the proband's brother and three cousins) with the variant (one adult), free thyroxine (fT4) was below the lower limit of the reference range in two, and just above this limit in the other two. Three were overweight or obese, adolescents had disharmonious pubertal development and the adult had profound macroorchidism. In conclusion, male hemizygous carriers of a pathogenic IGSF1 variant can present with fT4 concentration above the lower limit of the reference range while severe early onset obesity or premature testicular growth are part of the phenotypic spectrum.


Asunto(s)
Hipotiroidismo Congénito , Trastornos Gonadales , Inmunoglobulinas , Proteínas de la Membrana , Obesidad , Prolactina/sangre , Testículo/crecimiento & desarrollo , Tiroxina/sangre , Adolescente , Hipotiroidismo Congénito/sangre , Hipotiroidismo Congénito/genética , Trastornos Gonadales/sangre , Trastornos Gonadales/genética , Humanos , Inmunoglobulinas/deficiencia , Inmunoglobulinas/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Obesidad/sangre , Obesidad/genética , Obesidad Mórbida/sangre , Obesidad Mórbida/genética , Obesidad Infantil/sangre , Obesidad Infantil/genética , Linaje , Síndrome
10.
Ned Tijdschr Geneeskd ; 1642020 04 16.
Artículo en Holandés | MEDLINE | ID: mdl-32395950

RESUMEN

A 4-year-old girl presented with an alteration of consciousness and absence of speech after a short period of vomiting, diarrhoea and fever. MRI of the brain revealed a focal lesion in the splenium of the corpus callosum. Rotavirus was detected in the faeces. We concluded that the rotavirus infection had caused mild encephalopathy with a reversible splenial lesion.


Asunto(s)
Encefalopatías/diagnóstico , Cuerpo Calloso , Infecciones por Rotavirus , Rotavirus/aislamiento & purificación , Trastornos del Habla/diagnóstico , Inconsciencia/diagnóstico , Encefalopatías/fisiopatología , Encefalopatías/virología , Preescolar , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Diagnóstico Diferencial , Heces/virología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Infecciones por Rotavirus/complicaciones , Infecciones por Rotavirus/diagnóstico , Infecciones por Rotavirus/fisiopatología , Trastornos del Habla/etiología , Inconsciencia/etiología
12.
J Clin Endocrinol Metab ; 105(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31650157

RESUMEN

CONTEXT: The X-linked immunoglobulin superfamily, member 1 (IGSF1), gene is highly expressed in the hypothalamus and in pituitary cells of the POU1F1 lineage. Human loss-of-function mutations in IGSF1 cause central hypothyroidism, hypoprolactinemia, and macroorchidism. Additionally, most affected adults exhibit higher than average IGF-1 levels and anecdotal reports describe acromegaloid features in older subjects. However, somatotrope function has not yet been formally evaluated in this condition. OBJECTIVE: We aimed to evaluate the role of IGSF1 in human and murine somatotrope function. PATIENTS, DESIGN, AND SETTING: We evaluated 21 adult males harboring hemizygous IGSF1 loss-of-function mutations for features of GH excess, in an academic clinical setting. MAIN OUTCOME MEASURES: We compared biochemical and tissue markers of GH excess in patients and controls, including 24-hour GH profile studies in 7 patients. Parallel studies were undertaken in male Igsf1-deficient mice and wild-type littermates. RESULTS: IGSF1-deficient adult male patients demonstrated acromegaloid facial features with increased head circumference as well as increased finger soft-tissue thickness. Median serum IGF-1 concentrations were elevated, and 24-hour GH profile studies confirmed 2- to 3-fold increased median basal, pulsatile, and total GH secretion. Male Igsf1-deficient mice also demonstrated features of GH excess with increased lean mass, organ size, and skeletal dimensions and elevated mean circulating IGF-1 and pituitary GH levels. CONCLUSIONS: We demonstrate somatotrope neurosecretory hyperfunction in IGSF1-deficient humans and mice. These observations define a hitherto uncharacterized role for IGSF1 in somatotropes and indicate that patients with IGSF1 mutations should be evaluated for long-term consequences of increased GH exposure.


Asunto(s)
Inmunoglobulinas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Neurosecreción/fisiología , Somatotrofos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Hormona del Crecimiento/biosíntesis , Humanos , Inmunoglobulinas/deficiencia , Factor I del Crecimiento Similar a la Insulina/análisis , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Persona de Mediana Edad
13.
Horm Res Paediatr ; 92(6): 372-381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32344414

RESUMEN

INTRODUCTION: Short stature homeobox-containing gene (SHOX) haploinsufficiency is associated with short stature, Madelung deformity and mesomelia. Current clinical screening tools are based on patients with intragenic variants or deletions. However, recent discoveries showed that deletions of the enhancer elements are quite common. The majority of these patients show less body disproportion and respond better to recombinant human growth hormone treatment. We redefined clinical criteria for genetic analysis to facilitate detection of the full spectrum of SHOX haploinsufficiency. METHODS: We analyzed 51 children with SHOX variants or deletions and 25 children with a deletion in its enhancer region. Data were compared to 277 children referred for suspicion of growth failure without endocrine or genetic pathology. RESULTS: Only half of the patients with an enhancer region deletion fulfilled any of the current screening criteria. We propose new clinical criteria based on sitting height to height ratio >1 SDS or arm span ≥3 cm below height, with a sensitivity of 99%. When these criteria are combined with obligatory short stature, the sensitivity to detect SHOX haploinsufficiency is 68.1%, the specificity 80.6%, and the number needed to screen 21 patients. CONCLUSION: Novel clinical criteria for screening for SHOX haploinsufficiency allow the detection of patients within the full genetic spectrum, that is, intragenic variants and enhancer region deletions.


Asunto(s)
Secuencia de Bases , Elementos de Facilitación Genéticos , Trastornos del Crecimiento/genética , Haploinsuficiencia , Eliminación de Secuencia , Proteína de la Caja Homeótica de Baja Estatura/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios Retrospectivos
14.
J Endocr Soc ; 2(3): 220-231, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29594256

RESUMEN

Immunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein highly expressed in the mammalian pituitary gland. Shortly after its discovery in 1998, the protein was proposed to function as a coreceptor for inhibins (and was even temporarily renamed inhibin binding protein). However, subsequent investigations, both in vitro and in vivo, failed to support a role for IGSF1 in inhibin action. Research on IGSF1 nearly ground to a halt until 2011, when next-generation sequencing identified mutations in the X-linked IGSF1 gene in boys and men with congenital central hypothyroidism. IGSF1 was localized to thyrotrope cells, implicating the protein in pituitary control of the thyroid. Investigations in two Igsf1 knockout mouse models converged to show that IGSF1 deficiency leads to reduced expression of the receptor for thyrotropin-releasing hormone (TRH) and impaired TRH stimulation of thyrotropin secretion, providing a candidate mechanism for the central hypothyroidism observed in patients. Nevertheless, the normal functions of IGSF1 in thyrotropes and other cells remain unresolved. Moreover, IGSF1 mutations are also commonly associated with other clinical phenotypes, including prolactin and growth hormone dysregulation, and macroorchidism. How the loss of IGSF1 produces these characteristics is unknown. Although early studies of IGSF1 ran into roadblocks and blind alleys, armed with the results of detailed clinical investigations, powerful mouse models, and new reagents, the field is now poised to discover IGSF1's function in endocrine tissues, including the pituitary and testes.

15.
PLoS One ; 12(7): e0180731, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28686733

RESUMEN

Mutations in the immunoglobulin superfamily, member 1 gene (IGSF1/Igsf1) cause an X-linked form of central hypothyroidism. The canonical form of IGSF1 is a transmembrane glycoprotein with 12 immunoglobulin (Ig) loops. The protein is co-translationally cleaved into two sub-domains. The carboxyl-terminal domain (CTD), which contains the last 7 Ig loops, is trafficked to the plasma membrane. Most pathogenic mutations in IGSF1 map to the portion of the gene encoding the CTD. IGSF1/Igsf1 encodes a variety of transcripts. A little studied, but abundant splice variant encodes a truncated form of the protein, predicted to contain the first 2 Ig loops of the full-length IGSF1. The protein (hereafter referred to as IGSF1 isoform 2 or IGSF1-2) is likely retained in most individuals with IGSF1 mutations. Here, we characterized basic biochemical properties of the protein as a foray into understanding its potential function. IGSF1-2, like the IGSF1-CTD, is a glycoprotein. In both mouse and rat, the protein is N-glycosylated at a single asparagine residue in the first Ig loop. Contrary to earlier predictions, neither the murine nor rat IGSF1-2 is secreted from heterologous or homologous cells. In addition, neither protein associates with the plasma membrane. Rather, IGSF1-2 appears to be retained in the endoplasmic reticulum. Whether the protein plays intracellular functions or is trafficked through the secretory pathway under certain physiologic or pathophysiologic conditions has yet to be determined.


Asunto(s)
Hipotiroidismo/genética , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Isoformas de Proteínas/genética , ARN Mensajero/genética , Animales , Membrana Celular/genética , Citoplasma/metabolismo , Humanos , Hipotiroidismo/patología , Masculino , Ratones , Mutación , Isoformas de ARN/genética , Ratas , Testículo/metabolismo , Testículo/patología
16.
Endocrinology ; 158(4): 815-830, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324000

RESUMEN

Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene cause central hypothyroidism. IGSF1 is a transmembrane glycoprotein of unknown function expressed in thyrotropin (TSH)-producing thyrotrope cells of the anterior pituitary gland. The protein is cotranslationally cleaved, with only its C-terminal domain (CTD) being trafficked to the plasma membrane. Most intragenic IGSF1 mutations in humans map to the CTD. In this study, we used CRISPR-Cas9 to introduce a loss-of-function mutation into the IGSF1-CTD in mice. The modified allele encodes a truncated protein that fails to traffic to the plasma membrane. Under standard laboratory conditions, Igsf1-deficient males exhibit normal serum TSH levels as well as normal numbers of TSH-expressing thyrotropes. However, pituitary expression of the TSH subunit genes and TSH protein content are reduced, as is expression of the receptor for thyrotropin-releasing hormone (TRH). When challenged with exogenous TRH, Igsf1-deficient males release TSH, but to a significantly lesser extent than do their wild-type littermates. The mice show similarly attenuated TSH secretion when rendered profoundly hypothyroid with a low iodine diet supplemented with propylthiouracil. Collectively, these results indicate that impairments in pituitary TRH receptor expression and/or downstream signaling underlie central hypothyroidism in IGSF1 deficiency syndrome.


Asunto(s)
Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Hipófisis/metabolismo , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tirotropina/metabolismo , Animales , Inmunoglobulinas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Receptores de Hormona Liberadora de Tirotropina/genética , Transducción de Señal/fisiología , Tirotropina/genética , Hormona Liberadora de Tirotropina/genética
17.
J Clin Endocrinol Metab ; 101(12): 4564-4573, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27603907

RESUMEN

CONTEXT: Isolated congenital central hypothyroidism (CeH) can result from mutations in TRHR, TSHB, and IGSF1, but its etiology often remains unexplained. We identified a missense mutation in the transducin ß-like protein 1, X-linked (TBL1X) gene in three relatives diagnosed with isolated CeH. TBL1X is part of the thyroid hormone receptor-corepressor complex. OBJECTIVE: The objectives of the study were the identification of TBL1X mutations in patients with unexplained isolated CeH, Sanger sequencing of relatives of affected individuals, and clinical and biochemical characterization; in vitro investigation of functional consequences of mutations; and mRNA expression in, and immunostaining of, human hypothalami and pituitary glands. DESIGN: This was an observational study. SETTING: The study was conducted at university medical centers. PATIENTS: Nineteen individuals with and seven without a mutation participated in the study. MAIN OUTCOME MEASURES: Outcome measures included sequencing results, clinical and biochemical characteristics of mutation carriers, and results of in vitro functional and expression studies. RESULTS: Sanger sequencing yielded five additional mutations. All patients (n = 8; six males) were previously diagnosed with CeH (free T4 [FT4] concentration below the reference interval, normal thyrotropin). Eleven relatives (two males) also carried mutations. One female had CeH, whereas 10 others had low-normal FT4 concentrations. As a group, adult mutation carriers had 20%-25% lower FT4 concentrations than controls. Twelve of 19 evaluated carriers had hearing loss. Mutations are located in the highly conserved WD40-repeat domain of the protein, influencing its expression and thermal stability. TBL1X mRNA and protein are expressed in the human hypothalamus and pituitary. CONCLUSIONS: TBL1X mutations are associated with CeH and hearing loss. FT4 concentrations in mutation carriers vary from low-normal to values compatible with CeH.


Asunto(s)
Pérdida Auditiva/genética , Hipotiroidismo/genética , Hipófisis/metabolismo , Tiroxina/sangre , Transducina/genética , Adolescente , Adulto , Niño , Femenino , Pérdida Auditiva/etiología , Heterocigoto , Humanos , Hipotálamo/metabolismo , Hipotiroidismo/sangre , Hipotiroidismo/complicaciones , Lactante , Masculino , Persona de Mediana Edad , Mutación , Linaje , ARN Mensajero/metabolismo , Adulto Joven
18.
Psychoneuroendocrinology ; 72: 80-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388687

RESUMEN

In patients with adrenal insufficiency (AI) a higher hydrocortisone intake has been associated with more impairment in quality of life (QoL). Irrespective of age, sex and severity of AI the dosage of hydrocortisone is titrated around 20mg/D in all patients with AI based on physical and mental signs and symptoms. However, until now it is unknown whether these QoL impairments are related to increased systemic cortisol exposure. Measurement of hair cortisol levels (CORThair) can be used to assess chronic systemic cortisol exposure. This study aimed to explore whether QoL in patients with AI is associated with CORThair and daily hydrocortisone intake. We performed a cross-sectional study in 120 patients with AI on stable hydrocortisone replacement, in whom hair samples and QoL data were collected. CORThair were measured with ELISA, and QoL was assessed with validated questionnaires (SF-36, EQ-5D, HADS, MFI-20). Patients reported impairments in 14 of 15 QoL subscales (p<0.001). More impairments in physical aspects of QoL correlated with higher CORThair and higher daily hydrocortisone intake (p<0.05), an effect that was more pronounced in female patients. Regression analyses including both CORThair and hydrocortisone intake revealed a significant negative contribution of higher hydrocortisone intake on physical aspects of QoL (p≤0.046), whereas no significant contribution was found for CORThair. The present study showed that patients with AI report several impairments in QoL which are associated with hydrocortisone intake, and to a lesser extent reflected by chronic systemic cortisol exposure as measured by hair cortisol. This suggests that QoL impairments in patients with AI are not per se the effect of prolonged exposure to elevated systemic cortisol levels.


Asunto(s)
Insuficiencia Suprarrenal/tratamiento farmacológico , Glucocorticoides , Hidrocortisona , Calidad de Vida , Adulto , Anciano , Estudios Transversales , Femenino , Estudios de Seguimiento , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Cabello/química , Humanos , Hidrocortisona/administración & dosificación , Hidrocortisona/efectos adversos , Hidrocortisona/metabolismo , Masculino , Persona de Mediana Edad , Factores Sexuales
19.
Neuroendocrinology ; 103(3-4): 408-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26336917

RESUMEN

BACKGROUND: Loss-of-function mutations in immunoglobulin superfamily member 1 (IGSF1) cause an X-linked syndrome of central hypothyroidism, macroorchidism, delayed pubertal testosterone rise, variable prolactin deficiency and variable partial GH deficiency in childhood. The clinical features and gene expression pattern suggest a pivotal role for IGSF1 in the pituitary, but detailed knowledge on pituitary hormone secretion in this syndrome is lacking. We therefore aimed to study the 24-hour pituitary hormone secretion in male patients with IGSF1 deficiency. METHODS: We collected blood samples every 10 min for 24 h in eight adult male IGSF1-deficient patients and measured circulating TSH, prolactin and gonadotropins. Deconvolution, modified cosinor and approximate entropy analyses were applied to quantify secretion rates, diurnal rhythmicity and regularity of hormone release. Results were compared to healthy controls matched for age and body mass index. RESULTS: Compared to healthy controls, IGSF1-deficient patients showed decreased pulsatile secretion of TSH with decreased disorderliness and reduced diurnal variation. Basal and pulsatile secretion of FSH was increased by over 200%, while LH secretion did not differ from healthy controls. We observed a bimodal distribution of prolactin secretion, i.e. severe deficiency in three and increased basal and total secretion in the other five patients. CONCLUSION: The altered TSH secretion pattern is consistent with the previously hypothesized defect in thyrotropin-releasing hormone signaling in IGSF1 deficiency. However, the phenotype is more extensive and includes increased FSH secretion without altered LH secretion as well as either undetectable or increased prolactin secretion.


Asunto(s)
Enfermedades Genéticas Congénitas/metabolismo , Inmunoglobulinas/deficiencia , Proteínas de la Membrana/deficiencia , Tirotropina/metabolismo , Adulto , Anciano , Ritmo Circadiano , Humanos , Hormona Luteinizante/metabolismo , Masculino , Persona de Mediana Edad , Paraproteinemias , Prolactina/metabolismo , Adulto Joven
20.
J Endocrinol ; 226(3): 181-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26163525

RESUMEN

Loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene cause an X-linked syndrome of central hypothyroidism, macroorchidism, variable prolactin and GH deficiency, delayed pubertal testosterone rise, and obesity. To understand the pathophysiology of this syndrome, knowledge on IGSF1's place in normal development is imperative. Therefore, we investigated spatial and temporal protein and mRNA expression of IGSF1 in rats using immunohistochemistry, real-time quantitative PCR (qPCR), and in situ hybridization. We observed high levels of IGSF1 expression in the brain, specifically the embryonic and adult choroid plexus and hypothalamus (principally in glial cells), and in the pituitary gland (PIT1-lineage of GH, TSH, and PRL-producing cells). IGSF1 is also expressed in the embryonic and adult zona glomerulosa of the adrenal gland, islets of Langerhans of the pancreas, and costameres of the heart and skeletal muscle. IGSF1 is highly expressed in fetal liver, but is absent shortly after birth. In the adult testis, IGSF1 is present in Sertoli cells (epithelial stages XIII-VI), and elongating spermatids (stages X-XII). Specificity of protein expression was corroborated with Igsf1 mRNA expression in all tissues. The expression patterns of IGSF1 in the pituitary gland and testis are consistent with the pituitary hormone deficiencies and macroorchidism observed in patients with IGSF1 deficiency. The expression in the brain, adrenal gland, pancreas, liver, and muscle suggest IGSF1's function in endocrine physiology might be more extensive than previously considered.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Inmunoglobulinas/genética , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Miocardio/metabolismo , Especificidad de Órganos , Páncreas/metabolismo , Ratas , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...