Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Rep Methods ; : 100760, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38677284

RESUMEN

The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.

3.
Nat Biotechnol ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168984

RESUMEN

RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.

4.
bioRxiv ; 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38260653

RESUMEN

Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.

5.
J Am Soc Mass Spectrom ; 35(1): 90-99, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38095561

RESUMEN

Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (the number of basic sites). We find that these peptides can be classified into two regimes (undercharging and overcharging) and that these two regimes display markedly different charging characteristics. Notably, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.


Asunto(s)
Péptidos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Péptidos/química
6.
mBio ; 15(1): e0292623, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112469

RESUMEN

IMPORTANCE: Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.


Asunto(s)
Oxidorreductasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Cianuros/metabolismo , Respiración , Biopelículas , Hemo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
JMIR Cardio ; 7: e50813, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064248

RESUMEN

BACKGROUND: Identifying high-risk individuals is crucial for preventing cardiovascular diseases (CVDs). Currently, risk assessment is mostly performed by physicians. Mobile health apps could help decouple the determination of risk from medical resources by allowing unrestricted self-assessment. The respective test results need to be interpretable for laypersons. OBJECTIVE: Together with a patient organization, we aimed to design a digital risk calculator that allows people to individually assess and optimize their CVD risk. The risk calculator was integrated into the mobile health app HerzFit, which provides the respective background information. METHODS: To cover a broad spectrum of individuals for both primary and secondary prevention, we integrated the respective scores (Framingham 10-year CVD, Systematic Coronary Risk Evaluation 2, Systematic Coronary Risk Evaluation 2 in Older Persons, and Secondary Manifestations Of Arterial Disease) into a single risk calculator that was recalibrated for the German population. In primary prevention, an individual's heart age is estimated, which gives the user an easy-to-understand metric for assessing cardiac health. For secondary prevention, the risk of recurrence was assessed. In addition, a comparison of expected to mean and optimal risk levels was determined. The risk calculator is available free of charge. Data safety is ensured by processing the data locally on the users' smartphones. RESULTS: Offering a risk calculator to the general population requires the use of multiple instruments, as each provides only a limited spectrum in terms of age and risk distribution. The integration of 4 internationally recommended scores allows risk calculation in individuals aged 30 to 90 years with and without CVD. Such integration requires recalibration and harmonization to provide consistent and plausible estimates. In the first 14 months after the launch, the HerzFit calculator was downloaded more than 96,000 times, indicating great demand. Public information campaigns proved effective in publicizing the risk calculator and contributed significantly to download numbers. CONCLUSIONS: The HerzFit calculator provides CVD risk assessment for the general population. The public demonstrated great demand for such a risk calculator as it was downloaded up to 10,000 times per month, depending on campaigns creating awareness for the instrument.

8.
EMBO J ; 42(23): e113332, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921330

RESUMEN

Amyloid-like protein assemblies have been associated with toxic phenotypes because of their repetitive and stable structure. However, evidence that cells exploit these structures to control function and activity of some proteins in response to stimuli has questioned this paradigm. How amyloid-like assembly can confer emergent functions and how cells couple assembly with environmental conditions remains unclear. Here, we study Rim4, an RNA-binding protein that forms translation-repressing assemblies during yeast meiosis. We demonstrate that in its assembled and repressive state, Rim4 binds RNA more efficiently than in its monomeric and idle state, revealing a causal connection between assembly and function. The Rim4-binding site location within the transcript dictates whether the assemblies can repress translation, underscoring the importance of the architecture of this RNA-protein structure for function. Rim4 assembly depends exclusively on its intrinsically disordered region and is prevented by the Ras/protein kinase A signaling pathway, which promotes growth and suppresses meiotic entry in yeast. Our results suggest a mechanism whereby cells couple a functional protein assembly with a stimulus to enforce a cell fate decision.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Meiosis , Proteínas Amiloidogénicas/metabolismo , ARN/metabolismo , Nutrientes , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745508

RESUMEN

Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.

10.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333139

RESUMEN

RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.

11.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333282

RESUMEN

Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS). Aside from confirming 8,700 known and discovering 20,359 novel interactions between 1125 proteins, we determined that 73% of our IP interactions are regulated by the presence of RNA. Our PPI data enables us to link proteins to life-cycle stage functions, highlighting that nearly half of the proteins participate in at least two distinct stages. We show that one of the most highly interconnected proteins, ERH, engages in multiple RNA processes, including via interactions with nuclear speckles and the mRNA export machinery. We also demonstrate that the spliceosomal protein SNRNP200 participates in distinct stress granule-associated RNPs and occupies different RNA target regions in the cytoplasm during stress. Our comprehensive RBP-focused PPI network is a novel resource for identifying multi-stage RBPs and exploring RBP complexes in RNA maturation.

12.
STAR Protoc ; 4(2): 102293, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37182203

RESUMEN

The Size-Exclusion Chromatography Analysis Toolkit (SECAT) elucidates protein complex dynamics using co-fractionated bottom-up mass spectrometry (CF-MS) data. Here, we present a protocol for the network-centric analysis and interpretation of CF-MS profiles using SECAT. We describe the technical steps for preprocessing, scoring, semi-supervised machine learning, and quantification, including common pitfalls and their solutions. We further provide guidance for data export, visualization, and the interpretation of SECAT results to discover dysregulated proteins and interactions, supporting new hypotheses and biological insights. For complete details on the use and execution of this protocol, please refer to Rosenberger et al. (2020).1.

13.
EMBO J ; 42(11): e112721, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070548

RESUMEN

Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.


Asunto(s)
Encéfalo , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mutación , Encéfalo/metabolismo , Convulsiones
14.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066236

RESUMEN

Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based high-throughput approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (number of basic sites). We find that these peptides can be classified into two regimes-undercharging and overcharging-and that these two regimes display markedly different charging characteristics. Strikingly, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.

15.
Chembiochem ; 24(10): e202200706, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36893077

RESUMEN

Protein tyrosine phosphatases (PTPs) are an important class of enzymes that modulate essential cellular processes through protein dephosphorylation and are dysregulated in various disease states. There is demand for new compounds that target the active sites of these enzymes, for use as chemical tools to dissect their biological roles or as leads for the development of new therapeutics. In this study, we explore an array of electrophiles and fragment scaffolds to investigate the required chemical parameters for covalent inhibition of tyrosine phosphatases. Our analysis juxtaposes the intrinsic electrophilicity of these compounds with their potency against several classical PTPs, revealing chemotypes that inhibit tyrosine phosphatases while minimizing excessive, potentially non-specific reactivity. We also assess sequence divergence at key residues in PTPs to explain their differential susceptibility to covalent inhibition. We anticipate that our study will inspire new strategies to develop covalent probes and inhibitors for tyrosine phosphatases.


Asunto(s)
Proteínas Tirosina Fosfatasas , Tirosina , Dominio Catalítico , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo
16.
Sci Adv ; 9(7): eade4814, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800428

RESUMEN

Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.


Asunto(s)
Poliadenilación , Pez Cebra , Animales , Humanos , Recién Nacido , Regiones no Traducidas 3' , Exones , Intrones/genética , Pez Cebra/genética , Embrión no Mamífero
17.
Artículo en Inglés | MEDLINE | ID: mdl-36767915

RESUMEN

There is no definitive consensus about the cost-effectiveness of minimally invasive aortic valve replacement (AVR) (MI-AVR) compared to conventional AVR (C-AVR). The aim of this study was to compare the rate of postoperative complications and total hospital costs of MI-AVR versus C-AVR overall and by the type of aortic prosthesis (biological or mechanical). Our single-center retrospective study included 324 patients over 18 years old who underwent elective isolated primary AVR with standard stented AV prosthesis at the Institute for Cardiovascular Diseases "Dedinje" between January 2019 and December 2019. Reintervention, emergencies, combined surgical interventions, and patients with sutureless valves were excluded. In both MI-AVR and C-AVR, mechanical valve implantation contributed to overall reduction of hospital costs with equal efficacy. The cost-effectiveness ratio indicated that C-AVR is cheaper and yielded a better clinical outcome with mechanical valve implantation (67.17 vs. 69.5). In biological valve implantation, MI-AVR was superior. MI-AVR patients had statistically significantly higher LVEF and a lower Euro SCORE than C-AVR patients (Mann-Whitney U-test, p = 0.002 and p = 0.002, respectively). There is a slight advantage to MI-AVR vs. C-AVR, since it costs EUR 9.44 more to address complications that may arise. Complications (mortality, early reoperation, cerebrovascular insult, pacemaker implantation, atrial fibrillation, AV block, systemic inflammatory response syndrome, wound infection) were less frequent in the MI-AVR, making MI-AVR more economically justified than C-AVR (18% vs. 22.1%).


Asunto(s)
Estenosis de la Válvula Aórtica , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Adolescente , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Factores de Riesgo , Diseño de Prótesis
18.
Proc Natl Acad Sci U S A ; 120(9): e2221109120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812203

RESUMEN

Certain long non-coding RNAs (lncRNAs) are known to contain small open reading frames that can be translated. Here we describe a much larger 25 kDa human protein, "Ribosomal IGS Encoded Protein" (RIEP), that remarkably is encoded by the well-characterized RNA polymerase (RNAP) II-transcribed nucleolar "promoter and pre-rRNA antisense" lncRNA (PAPAS). Strikingly, RIEP, which is conserved throughout primates but not found in other species, predominantly localizes to the nucleolus as well as mitochondria, but both exogenously expressed and endogenous RIEP increase in the nuclear and perinuclear regions upon heat shock (HS). RIEP associates specifically with the rDNA locus, increases levels of the RNA:DNA helicase Senataxin, and functions to sharply reduce DNA damage induced by heat shock. Proteomics analysis identified two mitochondrial proteins, C1QBP and CHCHD2, both known to have mitochondrial and nuclear functions, that we show interact directly, and relocalize following heat shock, with RIEP. Finally, it is especially notable that the rDNA sequences encoding RIEP are multifunctional, giving rise to an RNA that functions both as RIEP messenger RNA (mRNA) and as PAPAS lncRNA, as well as containing the promoter sequences responsible for rRNA synthesis by RNAP I. Our work has thus not only shown that a nucleolar "non-coding" RNA in fact encodes a protein, but also established a novel link between mitochondria and nucleoli that contributes to the cellular stress response.


Asunto(s)
ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/metabolismo , Transcripción Genética , ADN Ribosómico/genética , Nucléolo Celular/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Ribosómicas/metabolismo , ARN no Traducido/metabolismo , ARN Ribosómico/genética , Proteínas Portadoras/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
19.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711903

RESUMEN

The majority of cellular proteins interact with at least one partner or assemble into molecular-complexes to exert their function. This network of protein-protein interactions (PPIs) and the composition of macromolecular machines differ between cell types and physiological conditions. Therefore, characterizing PPI networks and their dynamic changes is vital for discovering novel biological functions and underlying mechanisms of cellular processes. However, producing an in-depth, global snapshot of PPIs from a given specimen requires measuring tens to thousands of LC-MS/MS runs. Consequently, while recent works made seminal contributions by mapping PPIs at great depth, almost all focused on just 1-2 conditions, generating comprehensive but mostly static PPI networks. In this study we report the development of SEC-TMT, a method that enables identifying and measuring PPIs in a quantitative manner from only 4-8 LC-MS/MS runs per biological sample. This was accomplished by incorporating tandem mass tag (TMT) multiplexing with a size exclusion chromatography mass spectrometry (SEC-MS) work-flow. SEC-TMT reduces measurement time by an order of magnitude while maintaining resolution and coverage of thousands of cellular interactions, equivalent to the gold standard in the field. We show that SEC-TMT provides benefits for conducting differential analyses to measure changes in the PPI network between conditions. This development makes it feasible to study dynamic systems at scale and holds the potential to drive more rapid discoveries of PPI impact on cellular processes.

20.
Medicina (Kaunas) ; 58(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36556899

RESUMEN

Background and Objectives: The vaccine against human papilloma virus (HPV) infection is recommended, according to the Serbian National Immunization Program, for children and adolescents aged 9−19 years. Three doses are given keeping in mind the recommendation that the second dose should be administered at least one month after the first dose, and the third at least three months after the second dose. No children who participated in this first study received the third dose because they did not meet these criteria. The study explored parents' knowledge about HPV infection and their awareness of the HPV vaccine. Materials and Methods: A cross-sectional questionnaire-based study was carried out in the city of Nis, in southeastern Serbia. According to the 2011 population census, the sample of children aged 9 to 19 was 850, and during the observed period, 631 children received the vaccine. A total of 615 fully completed questionnaires filled out by parents were included in the study. The study was carried out from 6 June 2022 to 7 October 2022. Multivariable logistic regression analysis was used. The odds ratio (OR) and 95% confidence intervals (CI) were calculated. The statistical significance was p < 0.05. Results: A total of 615 children were included in the study (499 were vaccinated with the first dose and 116 with the second). Out of 499 children vaccinated with the first dose, 398 (79.6%) were girls, which is significantly higher than the rate for boys (101). The independent variable sex was statistically significant at the level of p = 0.84, OR = 2.664 (95% CI from 0.879 to 7.954). Boys are 164% less likely to be vaccinated with the HPV vaccine than girls. We determined that the independent variable place of residence was significant at the level of p = 0.041, (OR = 3.809, 95% CI from 1.702 to 8.525). Based on these findings, we determined that parents who came from rural areas were 82% less likely to know about HPV infection and HPV vaccination. Children under 15 years of age were significantly more vaccinated than those ≥15 years (OR = 3.698, 95% CI from 1.354 to 12.598). The independent variable parental education was significant at the level of OR = 0.494, 95% CI from 0.301 to 0.791. Parents who had medical education showed significantly higher awareness about the infection caused by HPV and about the HPV vaccine (p = 0.004) than parents with no medical education. The possibility that a parent would decide to vaccinate a child significantly increased upon a pediatrician's recommendation, p = 0.000 with OR = 0.250 (95% CI from 0.127 to 0.707). Health insurance coverage of HPV vaccination for children aged 9−19 years significantly increased the probability of a positive parental decision to vaccinate a child, p = 0.001 with OR = 3.034 (95% CI from 1.063 to 8.662). Conclusion: We identified several significant factors that were important for HPV vaccination such as: children under 15 years, female sex, urban place of residence, medical education of parents, pediatrician's recommendation of the HPV vaccination, and HPV vaccination free of charge. Health education and the promotion of HPV vaccination as well as healthy sexual behavior are important factors in the preservation and improvement of the health of the whole population.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Masculino , Adolescente , Humanos , Femenino , Infecciones por Papillomavirus/prevención & control , Serbia , Vacunas contra Papillomavirus/uso terapéutico , Estudios Transversales , Conocimientos, Actitudes y Práctica en Salud , Padres , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...