Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(46): eabq3925, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383648

RESUMEN

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water.

2.
Sci Adv ; 8(39): eabq2542, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170359

RESUMEN

Impact glasses found in lunar soils provide a possible window into the impact history of the inner solar system. However, their use for precise reconstruction of this history is limited by an incomplete understanding of the physical mechanisms responsible for their origin and distribution and possible relationships to local and regional geology. Here, we report U-Pb isotopic dates and chemical compositions of impact glasses from the Chang'e-5 soil and quantitative models of impact melt formation and ejection that account for the compositions of these glasses. The predominantly local provenance indicated by their compositions, which constrains transport distances to <~150 kilometers, and the age-frequency distribution are consistent with formation mainly in impact craters 1 to 5 kilometers in diameter. Based on geological mapping and impact cratering theory, we tentatively identify specific craters on the basaltic unit sampled by Chang'e-5 that may have produced these glasses and compare their ages with the impact record of the asteroid belt.

3.
Science ; 374(6569): 887-890, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34618547

RESUMEN

Orbital data indicate that the youngest volcanic units on the Moon are basalt lavas in Oceanus Procellarum, a region with high levels of the heat-producing elements potassium, thorium, and uranium. The Chang'e-5 mission collected samples of these young lunar basalts and returned them to Earth for laboratory analysis. We measure an age of 1963 ± 57 million years for these lavas and determine their chemical and mineralogical compositions. This age constrains the lunar impact chronology of the inner Solar System and the thermal evolution of the Moon. There is no evidence for high concentrations of heat-producing elements in the deep mantle of the Moon that generated these lavas, so alternate explanations are required for the longevity of lunar magmatism.

4.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190562, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222641

RESUMEN

The lunar surface has been exposed to the space environment for billions of years and during this time has accumulated records of a wide range of astrophysical phenomena. These include solar wind particles and the cosmogenic products of solar particle events which preserve a record of the past evolution of the Sun, and cosmogenic nuclides produced by high-energy galactic cosmic rays which potentially record the galactic environment of the Solar System through time. The lunar surface may also have accreted material from the local interstellar medium, including supernova ejecta and material from interstellar clouds encountered by the Solar System in the past. Owing to the Moon's relatively low level of geological activity, absence of an atmosphere, and, for much of its history, lack of a magnetic field, the lunar surface is ideally suited to collect these astronomical records. Moreover, the Moon exhibits geological processes able to bury and thus both preserve and 'time-stamp' these records, although gaining access to them is likely to require a significant scientific infrastructure on the lunar surface. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

5.
Astrobiology ; 16(11): 900-912, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870583

RESUMEN

Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation-Moon-Regolith-Amino acids-Biomarkers. Astrobiology 16, 900-912.


Asunto(s)
Medio Ambiente Extraterrestre , Luna , Compuestos Orgánicos/análisis , Radiación , Aminoácidos/análisis , Biomarcadores/análisis , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/análisis , Polímeros/análisis , Solventes
6.
Astrobiology ; 15(2): 154-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25615648

RESUMEN

The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.


Asunto(s)
Evolución Química , Exobiología/métodos , Luna , Sistema Solar , Planeta Tierra , Cromatografía de Gases y Espectrometría de Masas , Geología , Calor , Hidroxibutiratos/química , Meteoroides , Planetas Menores , Planetas , Solventes , Temperatura , Erupciones Volcánicas
7.
Philos Trans A Math Phys Eng Sci ; 372(2024): 20130241, 2014 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-25114312

RESUMEN

The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation.

8.
Philos Trans A Math Phys Eng Sci ; 372(2024): 20130315, 2014 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-25114318

RESUMEN

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.

9.
Science ; 336(6087): 1426-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22604725

RESUMEN

The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...