Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(13): 5745-5753, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34152777

RESUMEN

van der Waals materials exhibit naturally passivated surfaces and an ability to form versatile heterostructures to enable an examination of carrier transport mechanisms not seen in traditional materials. Here, we report a new type of homojunction termed a "band-bending junction" whose potential landscape depends solely on the difference in thickness between the two sides of the junction. Using MoS2 on Au as a prototypical example, we find that surface potential differences can arise from the degree of vertical band bending in thin and thick regions. Furthermore, by using scanning ultrafast electron microscopy, we examine the spatiotemporal dynamics of charge carriers generated at this junction and find that lateral carrier separation is enabled by differences in the band bending in the vertical direction, which we verify with simulations. Band-bending junctions may therefore enable new optoelectronic devices that rely solely on band bending arising from thickness variations to separate charge carriers.


Asunto(s)
Diagnóstico por Imagen
2.
Nano Lett ; 21(12): 5083-5090, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34097421

RESUMEN

The intrinsic magnetic topological insulators MnBi2Te4 and MnBi2Se4 support novel topological states related to symmetry breaking by magnetic order. Unlike MnBi2Te4, the study of MnBi2Se4 has been inhibited by the lack of bulk crystals, as the van der Waals (vdW) crystal is not the thermodynamic equilibrium phase. Here, we report the layer-by-layer synthesis of vdW MnBi2Se4 crystals using nonequilibrium molecular beam epitaxy. Atomic-resolution scanning transmission electron microscopy and scanning tunneling microscopy identify a well-ordered vdW crystal with septuple-layer base units. The magnetic properties agree with the predicted layered antiferromagnetic ordering but disagree with its predicted out-of-plane orientation. Instead, our samples exhibit an easy-plane anisotropy, which is explained by including dipole-dipole interactions. Angle-resolved photoemission spectroscopy reveals the gapless Dirac-like surface state, which demonstrates that MnBi2Se4 is a topological insulator above the magnetic-ordering temperature. These studies show that MnBi2Se4 is a promising candidate for exploring rich topological phases of layered antiferromagnetic topological insulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...