Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33826, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027625

RESUMEN

Although presepsin, a crucial biomarker for the diagnosis and management of sepsis, has gained prominence in contemporary medical research, its relationship with routine laboratory parameters, including demographic data and hospital blood test data, remains underexplored. This study integrates machine learning with explainable artificial intelligence (XAI) to provide insights into the relationship between presepsin and these parameters. Advanced machine learning classifiers provide a multilateral view of data and play an important role in highlighting the interrelationships between presepsin and other parameters. XAI enhances analysis by ensuring transparency in the model's decisions, especially in selecting key parameters that significantly enhance classification accuracy. Utilizing XAI, this study successfully identified critical parameters that increased the predictive accuracy for sepsis patients, achieving a remarkable ROC AUC of 0.97 and an accuracy of 0.94. This breakthrough is possibly attributed to the comprehensive utilization of XAI in refining parameter selection, thus leading to these significant predictive metrics. The presence of missing data in datasets is another concern; this study addresses it by employing Extreme Gradient Boosting (XGBoost) to manage missing data, effectively mitigating potential biases while preserving both the accuracy and relevance of the results. The perspective of examining data from higher dimensions using machine learning transcends traditional observation and analysis. The findings of this study hold the potential to enhance patient diagnoses and treatment, underscoring the value of merging traditional research methods with advanced analytical tools.

2.
Neural Comput ; 36(4): 744-758, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38457753

RESUMEN

Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.

3.
Nat Commun ; 15(1): 129, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167379

RESUMEN

Memristor-integrated passive crossbar arrays (CAs) could potentially accelerate neural network (NN) computations, but studies on these devices are limited to software-based simulations owing to their poor reliability. Herein, we propose a self-rectifying memristor-based 1 kb CA as a hardware accelerator for NN computations. We conducted fully hardware-based single-layer NN classification tasks involving the Modified National Institute of Standards and Technology database using the developed passive CA, and achieved 100% classification accuracy for 1500 test sets. We also investigated the influences of the defect-tolerance capability of the CA, impact of the conductance range of the integrated memristors, and presence or absence of selection functionality in the integrated memristors on the image classification tasks. We offer valuable insights into the behavior and performance of CA devices under various conditions and provide evidence of the practicality of memristor-integrated passive CAs as hardware accelerators for NN applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA