Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338080

RESUMEN

This review examines the significant role of methane emissions in the livestock industry, with a focus on cattle and their substantial impact on climate change. It highlights the importance of accurate measurement and management techniques for methane, a potent greenhouse gas accounting for 14-16% of global emissions. The study evaluates both conventional and AI-driven methods for detecting methane emissions from livestock, particularly emphasizing cattle contributions, and the need for region-specific formulas. Sections cover livestock methane emissions, the potential of AI technology, data collection issues, methane's significance in carbon credit schemes, and current research and innovation. The review emphasizes the critical role of accurate measurement and estimation methods for effective climate change mitigation and reducing methane emissions from livestock operations. Overall, it provides a comprehensive overview of methane emissions in the livestock industry by synthesizing existing research and literature, aiming to improve knowledge and methods for mitigating climate change. Livestock-generated methane, especially from cattle, is highlighted as a crucial factor in climate change, and the review underscores the importance of integrating precise measurement and estimation techniques for effective mitigation.

2.
Front Vet Sci ; 10: 1300518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288378

RESUMEN

This study evaluated the effects of a complex natural feed additive on rumen fermentation, carcass characteristics and growth performance in Korean-native steers. In this study, in vitro and in vivo experiment were conducted. Seven different levels of complex natural feed additive (CA) were added to the buffered rumen fluid using AnkomRF gas production system for 12, 24 and 48 h. All experimental data were analyzed by mixed procedure of SAS. Total gas production increased in the CA groups, with the highest response observed in the 0.06% group at 48 h of incubation (linear, p = 0.02; quadratic, p < 0.01). Regarding rumen fermentation parameters, the total volatile fatty acid (TVFA) tended to increase in all the CA groups (p = 0.07). The concentrations of butyrate, iso-butyrate, and iso-valerate significantly increased in all treatment groups (p < 0.05). In the in vivo experiment, 23 Korean-native steers were allocated to two groups: (1) Control and (2) Treatment; control +0.07% CA (DM basis), in a randomized complete-block design and blocked by body weight (ave. body weight = 641.96 kg ± 62.51 kg, p = 0.80) and feed intake (ave. feed intake = 13.96 kg ± 0.74 kg, p = 0.08) lasted for 252 days. Average daily gain decreased in the treatment group (p < 0.01). Backfat thickness significantly decreased in the CA group (p = 0.03), whereas meat color tended to increase (p = 0.07). In conclusion, in the in vitro experiment, the inclusion of complex natural feed additive decreased methane proportion and tended to increase TVFA production, but supplementation to Korean native steers decreased average daily gain and backfat thickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA