Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2319160121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527198

RESUMEN

Granular media constitute the most abundant form of solid matter on Earth and beyond. When external forces are applied to a granular medium, the forces are transmitted through it via chains of contacts among grains-force chains. Understanding the spatial structure and temporal evolution of force chains constitutes a fundamental goal of granular mechanics. Here, we introduce an experimental technique, interference optical projection tomography, to study force chains in three-dimensional (3D) granular packs under triaxial shear loads and illustrate the technique with random assemblies of spheres and icosahedra. We find that, in response to an increasing vertical load, the pack of spheres forms intensifying vertical force chains, while the pack of icosahedra forms more interconnected force-chain networks. This provides microscopic insights into why particles with more angularity are more resistant to shear failure-the interconnected force-chain network is stronger (that is, more resilient to topological collapse) than the isolated force chains in round particles. The longer force chains with less branching in the pack of round particles are more likely to buckle, which leads to the macroscopic failure of the pack. This work paves the way for understanding the grain-scale underpinning of localized failure of 3D granular media, such as shear localization in landslides and stick-slip frictional motion in tectonic and induced earthquakes.

2.
Soft Matter ; 19(37): 7136-7148, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37695747

RESUMEN

We study fluid-induced deformation and fracture of cohesive granular media, and apply photoporomechanics to uncover the underpinning grain-scale mechanics. We fabricate photoelastic spherical particles of diameter d = 2 mm, and make a monolayer granular pack with tunable intergranular cohesion in a circular Hele-Shaw cell that is initially filled with viscous silicone oil. We inject water into the oil-filled photoelastic granular pack, varying the injection flow rate, defending-fluid viscosity, and intergranular cohesion. We find two different modes of fluid invasion: viscous fingering, and fracturing with leak-off of the injection fluid. We directly visualize the evolving effective stress field through the particles' photoelastic response, and discover a hoop effective stress region behind the water invasion front, where we observe tensile force chains in the circumferential direction. Outside the invasion front, we observe compressive force chains aligning in the radial direction. We conceptualize the system's behavior by means of a two-phase poroelastic continuum model. The model captures granular pack dilation and compaction with the boundary delineated by the invasion front, which explains the observed distinct alignments of the force chains. Finally, we rationalize the crossover from viscous fingering to fracturing by comparing the competing forces behind the process: viscous force from fluid injection that drives fractures, and intergranular cohesion and friction that resist fractures.

3.
Proc Natl Acad Sci U S A ; 120(22): e2303515120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216501

RESUMEN

Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.

4.
Lab Chip ; 23(5): 1358-1375, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789954

RESUMEN

Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation. We hope to engage the LoC community in the many opportunities within the transition ahead, and highlight the potential of LoC approaches to the broader community of researchers, industry experts, and policy makers working toward a low-carbon future.

5.
PNAS Nexus ; 1(4): pgac150, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36714866

RESUMEN

We study the collapse and expansion of a cavitation bubble in a deformable porous medium. We develop a continuum-scale model that couples compressible fluid flow in the pore network with the elastic response of a solid skeleton. Under the assumption of spherical symmetry, our model can be reduced to an ordinary differential equation that extends the Rayleigh-Plesset equation to bubbles in soft porous media. The extended Rayleigh-Plesset equation reveals that finite-size effects lead to the breakdown of the universal scaling relation between bubble radius and time that holds in the infinite-size limit. Our data indicate that the deformability of the porous medium slows down the collapse and expansion processes, a result with important consequences for wide-ranging phenomena, from drug delivery to spore dispersion.

6.
Nature ; 595(7869): 684-689, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321668

RESUMEN

There is growing concern about seismicity triggered by human activities, whereby small increases in stress bring tectonically loaded faults to failure. Examples of such activities include mining, impoundment of water, stimulation of geothermal fields, extraction of hydrocarbons and water, and the injection of water, CO2 and methane into subsurface reservoirs1. In the absence of sufficient information to understand and control the processes that trigger earthquakes, authorities have set up empirical regulatory monitoring-based frameworks with varying degrees of success2,3. Field experiments in the early 1970s at the Rangely, Colorado (USA) oil field4 suggested that seismicity might be turned on or off by cycling subsurface fluid pressure above or below a threshold. Here we report the development, testing and implementation of a multidisciplinary methodology for managing triggered seismicity using comprehensive and detailed information about the subsurface to calibrate geomechanical and earthquake source physics models. We then validate these models by comparing their predictions to subsequent observations made after calibration. We use our approach in the Val d'Agri oil field in seismically active southern Italy, demonstrating the successful management of triggered seismicity using a process-based method applied to a producing hydrocarbon field. Applying our approach elsewhere could help to manage and mitigate triggered seismicity.

7.
Soft Matter ; 17(29): 7004-7013, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34240724

RESUMEN

Viscous environments are ubiquitous in nature and in engineering applications, from mucus in lungs to oil recovery strategies in the earth's subsurface - and in all these environments, bacteria also thrive. The behavior of bacteria in viscous environments has been investigated for a single bacterium, but not for active suspensions. Dense populations of pusher-type bacteria are known to create superfluidic regimes where the effective viscosity of the entire suspension is reduced through collective motion, and the main purpose of this study is to investigate how a viscous environment will affect this behavior. Using a Couette rheometer, we measure shear stress as a function of the applied shear rate to define the effective viscosity of suspensions of Escherichia coli (E. coli), while varying both the bacterial density within the suspension and the viscosity of the suspending fluid. We document the remarkable observation that E. coli decreases the effective suspension viscosity to near-zero (superfluidic regime) for all solvent viscosities tested (1-17 mPa s). Specifically, we observe that the bacterial density needed to trigger this superfluidic regime and the maximum shear rate under which this regime can be sustained both decrease with increasing solvent viscosity. We find that the resulting rheograms can be well approximated by the Carreau-Yasuda law. Using this, we propose a constitutive model as a function of the solvent viscosity and the bacterial concentration only. This model captures the onset of the superfluidic regime and offers promising avenues for the modelling of flow of bacterial suspensions in viscous environments.


Asunto(s)
Bacterias , Escherichia coli , Reología , Suspensiones , Viscosidad
8.
Proc Natl Acad Sci U S A ; 117(50): 31660-31664, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257583

RESUMEN

Widespread seafloor methane venting has been reported in many regions of the world oceans in the past decade. Identifying and quantifying where and how much methane is being released into the ocean remains a major challenge and a critical gap in assessing the global carbon budget and predicting future climate [C. Ruppel, J. D. Kessler. Rev. Geophys. 55, 126-168 (2017)]. Methane hydrate ([Formula: see text]) is an ice-like solid that forms from methane-water mixture under elevated-pressure and low-temperature conditions typical of the deep marine settings (>600-m depth), often referred to as the hydrate stability zone (HSZ). Wide-ranging field evidence indicates that methane seepage often coexists with hydrate-bearing sediments within the HSZ, suggesting that hydrate formation may play an important role during the gas-migration process. At a depth that is too shallow for hydrate formation, existing theories suggest that gas migration occurs via capillary invasion and/or initiation and propagation of fractures (Fig. 1). Within the HSZ, however, a theoretical mechanism that addresses the way in which hydrate formation participates in the gas-percolation process is missing. Here, we study, experimentally and computationally, the mechanics of gas percolation under hydrate-forming conditions. We uncover a phenomenon-crustal fingering-and demonstrate how it may control methane-gas migration in ocean sediments within the HSZ.

9.
Nat Commun ; 11(1): 3053, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546793

RESUMEN

Understanding the physical mechanisms that underpin the link between fluid injection and seismicity is essential in efforts to mitigate the seismic risk associated with subsurface technologies. To that end, here we develop a poroelastic model of earthquake nucleation based on rate-and-state friction in the manner of spring-sliders, and analyze conditions for the emergence of stick-slip frictional instability-the mechanism for earthquakes-by carrying out a linear stability analysis and nonlinear simulations. We find that the likelihood of triggering earthquakes depends largely on the rate of increase in pore pressure rather than its magnitude. Consequently, fluid injection at constant rate acts in the direction of triggering seismic rupture at early times followed by aseismic creep at late times. Our model implies that, for the same cumulative volume of injected fluid, an abrupt high-rate injection protocol is likely to increase the seismic risk whereas a gradual step-up protocol is likely to decrease it.

10.
Risk Anal ; 40(4): 723-740, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872479

RESUMEN

The risk for a global transmission of flu-type viruses is strengthened by the physical contact between humans and accelerated through individual mobility patterns. The Air Transportation System plays a critical role in such transmissions because it is responsible for fast and long-range human travel, while its building components-the airports-are crowded, confined areas with usually poor hygiene. Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) consider hand hygiene as the most efficient and cost-effective way to limit disease propagation. Results from clinical studies reveal the effect of hand washing on individual transmissibility of infectious diseases. However, its potential as a mitigation strategy against the global risk for a pandemic has not been fully explored. Here, we use epidemiological modeling and data-driven simulations to elucidate the role of individual engagement with hand hygiene inside airports in conjunction with human travel on the global spread of epidemics. We find that, by increasing travelers engagement with hand hygiene at all airports, a potential pandemic can be inhibited by 24% to 69%. In addition, we identify 10 airports at the core of a cost-optimal deployment of the hand-washing mitigation strategy. Increasing hand-washing rate at only those 10 influential locations, the risk of a pandemic could potentially drop by up to 37%. Our results provide evidence for the effectiveness of hand hygiene in airports on the global spread of infections that could shape the way public-health policy is implemented with respect to the overall objective of mitigating potential population health crises.


Asunto(s)
Viaje en Avión , Control de Enfermedades Transmisibles/métodos , Enfermedades Transmisibles/transmisión , Higiene de las Manos , Modelos Teóricos , Humanos , Procesos Estocásticos
11.
Proc Natl Acad Sci U S A ; 116(28): 13780-13784, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31209045

RESUMEN

The pinch-off of a bubble is an example of the formation of a singularity, exhibiting a characteristic separation of length and time scales. Because of this scale separation, one expects universal dynamics that collapse into self-similar behavior determined by the relative importance of viscous, inertial, and capillary forces. Surprisingly, however, the pinch-off of a bubble in a large tank of viscous liquid is known to be nonuniversal. Here, we show that the pinch-off dynamics of a bubble confined in a capillary tube undergo a sequence of two distinct self-similar regimes, even though the entire evolution is controlled by a balance between viscous and capillary forces. We demonstrate that the early-time self-similar regime restores universality to bubble pinch-off by erasing the system's memory of the initial conditions. Our findings have important implications for bubble/drop generation in microfluidic devices, with applications in inkjet printing, medical imaging, and synthesis of particulate materials.

12.
Proc Natl Acad Sci U S A ; 116(28): 13799-13806, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227608

RESUMEN

Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.

13.
Sci Rep ; 8(1): 15729, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356141

RESUMEN

Wettability, or preferential affinity of a fluid to a solid substrate in the presence of another fluid, plays a critical role in the statics and dynamics of fluid-fluid displacement in porous media. The complex confined geometry of porous media, however, makes upscaling of microscopic wettability to the macroscale a nontrivial task. Here, we elucidate the contribution of pore geometry in controlling the apparent wettability characteristics of a porous medium. Using direct numerical simulations of fluid-fluid displacement, we study the reversal of interface curvature in a single converging-diverging capillary, and demonstrate the co-existence of concave and convex interfaces in a porous medium-a phenomenon that we also observe in laboratory micromodel experiments. We show that under intermediate contact angles the sign of interface curvature is strongly influenced by the pore geometry. We capture the interplay between surface chemical properties and pore geometry in the form of a dimensionless quantity, the apparent wettability number, which predicts the conditions under which concave and convex interfaces co-exist. Our findings advance the fundamental understanding of wettability in confined geometries, with implications to macroscopic multiphase-flow processes in porous media, from fuel cells to enhanced oil recovery.

14.
Phys Rev Lett ; 120(14): 144501, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29694110

RESUMEN

We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

15.
Phys Rev Lett ; 120(8): 084501, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543002

RESUMEN

Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and macroscopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a circular capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting, we show that the presence of a moving contact line induces a wetting transition at a critical capillary number that is contact angle dependent. At small displacement rates, the fluid-fluid interface deforms slightly from its equilibrium state and moves downstream at a constant velocity, without changing its shape. As the displacement rate increases, however, a wetting transition occurs: the interface becomes unstable and forms a finger that advances along the axis of the tube, leaving the contact line behind, separated from the meniscus by a macroscopic film of the viscous fluid on the tube wall. We describe the dewetting of the entrained film, and show that it universally leads to bubble pinch-off, therefore demonstrating that the hydrodynamics of contact line motion generate bubbles in microfluidic devices, even in the absence of geometric constraints.

16.
Phys Rev E ; 97(2-1): 022906, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29548217

RESUMEN

Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection and extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard. Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method. We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous (homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault, the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

17.
Soft Matter ; 14(8): 1417-1426, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29388999

RESUMEN

Durotaxis refers to cell motion directed by stiffness gradients of an underlying substrate. Recent work has shown that droplets also move spontaneously along stiffness gradients through a process reminiscent of durotaxis. Wetting droplets, however, move toward softer substrates, an observation seemingly at odds with cell motion. Here, we extend our understanding of this phenomenon, and show that wettability of the substrate plays a critical role: while wetting droplets move in the direction of lower stiffness, nonwetting liquids reverse droplet durotaxis. Our numerical experiments also reveal that Laplace pressure can be used to determine the direction of motion of liquid slugs in confined environments. Our results suggest new ways of controlling droplet dynamics at small scales, which can open the door to enhanced bubble and droplet logic in microfluidic platforms.

18.
Phys Rev E ; 94(3-1): 033111, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27739860

RESUMEN

We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large (as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branching, and pinch off. This dynamic flow disorder limits phase growth and arrests thermodynamic coarsening. As a result, the system reaches a regime of statistical steady state in which the binary mixture is permanently driven away from equilibrium.

19.
Proc Natl Acad Sci U S A ; 113(37): 10251-6, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27559089

RESUMEN

Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore filling to postbridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.

20.
Sci Rep ; 6: 21360, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26883170

RESUMEN

Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...