Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Obstet Gynecol Scand ; 103(5): 897-906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339766

RESUMEN

INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.


Asunto(s)
Cuerpo Calloso , Imagen por Resonancia Magnética , Femenino , Humanos , Biomarcadores , Lóbulo Límbico , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Embarazo
2.
Nat Commun ; 14(1): 6025, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758766

RESUMEN

Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.


Asunto(s)
Proteínas CELF , Neocórtex , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Neocórtex/metabolismo , Neuronas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo
3.
Sci Rep ; 13(1): 5567, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019971

RESUMEN

The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons' neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.


Asunto(s)
Corteza Cerebral , Aprendizaje Automático , Humanos , Corteza Cerebral/anatomía & histología , Neuronas , Procesamiento de Imagen Asistido por Computador
4.
Front Neuroanat ; 15: 749390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970124

RESUMEN

The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson's disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.

5.
Eur J Paediatr Neurol ; 35: 67-73, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34653829

RESUMEN

In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Autopsia , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Embarazo
6.
Front Neural Circuits ; 15: 714611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539353

RESUMEN

The pioneering work by von Economo in 1925 on the cytoarchitectonics of the cerebral cortex revealed a specialized and unique cell type in the adult human fronto-insular (FI) and anterior cingulate cortex (ACC). In modern studies, these neurons are termed von Economo neurons (VENs). In his work, von Economo described them as stick, rod or corkscrew cells because of their extremely elongated and relatively thin cell body clearly distinguishable from common oval or spindle-shaped infragranular principal neurons. Before von Economo, in 1899 Cajal depicted the unique somato-dendritic morphology of such cells with extremely elongated soma in the FI. However, although VENs are increasingly investigated, Cajal's observation is still mainly being neglected. On Golgi staining in humans, VENs have a thick and long basal trunk with horizontally oriented terminal branching (basilar skirt) from where the axon arises. They are clearly distinguishable from a spectrum of modified pyramidal neurons found in infragranular layers, including oval or spindle-shaped principal neurons. Spindle-shaped cells with highly elongated cell body were also observed in the ACC of great apes, but despite similarities in soma shape, their dendritic and axonal morphology has still not been described in sufficient detail. Studies identifying VENs in non-human species are predominantly done on Nissl or anti-NeuN staining. In most of these studies, the dendritic and axonal morphology of the analyzed cells was not demonstrated and many of the cells found on Nissl or anti-NeuN staining had a cell body shape characteristic for common oval or spindle-shaped cells. Here we present an extensive literature overview on VENs, which demonstrates that human VENs are specialized elongated principal cells with unique somato-dendritic morphology found abundantly in the FI and ACC of the human brain. More research is needed to properly evaluate the presence of such specialized cells in other primates and non-primate species.


Asunto(s)
Corteza Cerebral , Neuronas , Animales , Encéfalo , Giro del Cíngulo , Primates
7.
Cereb Cortex ; 31(7): 3536-3550, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33704445

RESUMEN

The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.


Asunto(s)
Feto/embriología , Lóbulo Límbico/embriología , Neocórtex/embriología , Telencéfalo/embriología , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Encéfalo/patología , Feto/diagnóstico por imagen , Feto/patología , Edad Gestacional , Humanos , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/embriología , Ventrículos Laterales/patología , Lóbulo Límbico/diagnóstico por imagen , Lóbulo Límbico/patología , Imagen por Resonancia Magnética , Neocórtex/diagnóstico por imagen , Neocórtex/patología , Tamaño de los Órganos , Telencéfalo/diagnóstico por imagen , Telencéfalo/patología
8.
Cells ; 10(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477896

RESUMEN

White matter interstitial neurons (WMIN) are a subset of cortical neurons located in the subcortical white matter. Although they were fist described over 150 years ago, they are still largely unexplored and often considered a small, functionally insignificant neuronal population. WMIN are adult remnants of neurons located in the transient fetal subplate zone (SP). Following development, some of the SP neurons undergo apoptosis, and the remaining neurons are incorporated in the adult white matter as WMIN. In the adult human brain, WMIN are quite a large population of neurons comprising at least 3% of all cortical neurons (between 600 and 1100 million neurons). They include many of the morphological neuronal types that can be found in the overlying cerebral cortex. Furthermore, the phenotypic and molecular diversity of WMIN is similar to that of the overlying cortical neurons, expressing many glutamatergic and GABAergic biomarkers. WMIN are often considered a functionally unimportant subset of neurons. However, upon closer inspection of the scientific literature, it has been shown that WMIN are integrated in the cortical circuitry and that they exhibit diverse electrophysiological properties, send and receive axons from the cortex, and have active synaptic contacts. Based on these data, we are able to enumerate some of the potential WMIN roles, such as the control of the cerebral blood flow, sleep regulation, and the control of information flow through the cerebral cortex. Also, there is a number of studies indicating the involvement of WMIN in the pathophysiology of many brain disorders such as epilepsy, schizophrenia, Alzheimer's disease, etc. All of these data indicate that WMIN are a large population with an important function in the adult brain. Further investigation of WMIN could provide us with novel data crucial for an improved elucidation of the pathophysiology of many brain disorders. In this review, we provide an overview of the current WMIN literature, with an emphasis on studies conducted on the human brain.


Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Neuronas GABAérgicas , Sustancia Blanca , Adulto , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Humanos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
9.
Neuroimage ; 210: 116553, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31972277

RESUMEN

The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and â€‹40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Neuroimagen/métodos , Diagnóstico Prenatal/métodos , Telencéfalo , Sustancia Blanca , Autopsia , Imagen de Difusión Tensora/métodos , Femenino , Feto , Edad Gestacional , Humanos , Inmunohistoquímica , Cápsula Interna/anatomía & histología , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/enzimología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/embriología , Embarazo , Telencéfalo/anatomía & histología , Telencéfalo/diagnóstico por imagen , Telencéfalo/embriología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/embriología
10.
J Anat ; 235(3): 626-636, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173356

RESUMEN

In the adult human brain, the interstitial neurons (WMIN) of the subcortical white matter are the surviving remnants of the fetal subplate zone. It has been suggested that they perform certain important functions and may be involved in the pathogenesis of several neurological and psychiatric disorders. However, many important features of this class of human cortical neurons remain insufficiently explored. In this study, we analyzed the total number, and regional and topological distribution of WMIN in the adult human subcortical white matter, using a combined immunocytochemical (NeuN) and stereological approaches. We found that the average number of WMIN in 1 mm3 of the subcortical white matter is 1.230 ± 549, which translates to the average total number of 593 811 183.6 ± 264 849 443.35 of WMIN in the entire subcortical telencephalic white matter. While there were no significant differences in their regional distribution, the lowest number of WMIN has been consistently observed in the limbic cortex, and the highest number in the frontal cortex. With respect to their topological distribution, the WMIN were consistently more numerous within gyral crowns, less numerous along gyral walls and least numerous at the bottom of cortical sulci (where they occupy a narrow and compact zone below the cortical-white matter border). The topological location of WMIN is also significantly correlated with their morphology: pyramidal and multipolar forms are the most numerous within gyral crowns, whereas bipolar forms predominate at the bottom of cortical sulci. Our results indicate that WMIN represent substantial neuronal population in the adult human cerebral cortex (e.g. more numerous than thalamic or basal ganglia neurons) and thus deserve more detailed morphological and functional investigations in the future.


Asunto(s)
Sustancia Blanca/citología , Humanos , Neuronas
12.
Cereb Cortex ; 26(12): 4574-4589, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26428952

RESUMEN

Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and ß-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Simportadores/metabolismo , Adulto , Anciano de 80 o más Años , Encéfalo/citología , Niño , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Lactante , Recién Nacido , Glicoproteínas de Membrana/metabolismo , Análisis por Micromatrices , Persona de Mediana Edad , ARN Mensajero/metabolismo , Receptor trkB/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Adulto Joven , Cotransportadores de K Cl
13.
CNS Neurosci Ther ; 21(2): 74-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25312583

RESUMEN

The human fetal cerebral cortex develops through a series of partially overlapping histogenetic events which occur in transient cellular compartments, such as the subplate zone. The subplate serves as waiting compartment for cortical afferent fibers, the major site of early synaptogenesis and neuronal differentiation and the hub of the transient fetal cortical circuitry. Thus, the subplate has an important but hitherto neglected role in the human fetal cortical connectome. The subplate is also an important compartment for radial and tangential migration of future cortical neurons. We review the diversity of subplate neuronal phenotypes and their involvement in cortical circuitry and discuss the complexity of late neuronal migration through the subplate as well as its potential relevance for pathogenesis of migration disorders and cortical dysplasia. While migratory neurons may become misplaced within the subplate, they can easily survive by being involved in early subplate circuitry; this can enhance their subsequent survival even if they have immature or abnormal physiological activity and misrouted connections and thus survive into adulthood. Thus, better understanding of subplate developmental history and various subsets of its neurons may help to elucidate certain types of neuronal disorders, including those accompanied by epilepsy.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/patología , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Desarrollo Cortical/patología , Movimiento Celular/fisiología , Humanos , Neuronas/fisiología
14.
Prog Brain Res ; 214: 159-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25410357

RESUMEN

The neural extracellular matrix (ECM) provides a supportive framework for differentiating cells and their processes and regulates morphogenetic events by spatially and temporally relevant localization of signaling molecules and by direct signaling via receptor and/or coreceptor-mediated action. The embryonic human brain and fetal human brain contain large amounts and a diversity of extracellular matrix components, which are especially prominent in the transient subplate zone, in the crossroads of axonal pathways, at the developing cortical-white matter interface, and in the marginal zone. Perinatal and postnatal reorganizations of these tissue compartments extend into the second year of life. Developmental changes in the amount and composition of the extracellular matrix (as well as changes in fiber architectonics) are significant for plastic responses to damage and for changes in magnetic resonance imaging (MRI) signal intensity of the fetal and early postnatal human brain. In this chapter, we discuss the expression pattern of the major components of the fetal ECM of the human brain and the role they play during laminar and connectivity development in healthy brain and in the neurodevelopmental disorders. The aim of the chapter is to elucidate ECM-related developmental events as potential models of successful functional recovery after injury and to explore its relevance for diagnostic and therapeutic approaches.


Asunto(s)
Encefalopatías/patología , Encéfalo , Discapacidades del Desarrollo/patología , Matriz Extracelular/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/complicaciones , Discapacidades del Desarrollo/etiología , Humanos , Imagen por Resonancia Magnética
15.
Brain Struct Funct ; 219(1): 231-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23250390

RESUMEN

We analyzed the developmental history of the subplate and related cellular compartments of the prenatal and early postnatal human cerebrum by combining postmortem histological analysis with in vivo MRI. Histological analysis was performed on 21 postmortem brains (age range: 26 postconceptional weeks to 6.5 years) using Nissl staining, AChE-histochemistry, PAS-Alcian blue histochemistry, Gallyas' silver impregnation, and immunocytochemistry for MAP2, synaptophysin, neurofilament, chondroitin sulfate, fibronectin, and myelin basic protein. The histological findings were correlated with in vivo MRI findings obtained in 30 age-matched fetuses, infants, and children. We analyzed developmental reorganization of major cellular (cell bodies, growing axons) and extracellular (extracellular matrix) components of the subplate and the developing cortex/white matter interface. We found that perinatal and postnatal reorganization of these tissue components is protracted (extending into the second year of life) and characterized by well-delineated, transient and previously undescribed structural and molecular changes at the cortex/white matter interface. The findings of this study are clinically relevant because they may inform and guide a proper interpretation of highly dynamic and hitherto puzzling changes of cortical thickness and cortical/white matter interface as described in current in vivo MRI studies.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Neuronas/citología , Neuronas/fisiología , Factores de Edad , Mapeo Encefálico , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Preescolar , Femenino , Feto , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Masculino , Proteínas del Tejido Nervioso/metabolismo
16.
Front Hum Neurosci ; 7: 423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935575

RESUMEN

The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter) probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

17.
Cell ; 149(4): 899-911, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579290

RESUMEN

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


Asunto(s)
Corteza Cerebral/embriología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/embriología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neurogénesis , Células Piramidales/metabolismo , Procesamiento Postranscripcional del ARN , Especificidad de la Especie
18.
Proc Natl Acad Sci U S A ; 108(32): 13281-6, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21788513

RESUMEN

The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature 264:705-712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and nonhuman primates. It is generally accepted that synaptic pruning in the cerebral cortex, including prefrontal areas, occurs at puberty and is completed during early adolescence [Huttenlocher PR, et al. (1979) Brain Res 163:195-205]. In the present study we analyzed synaptic spine density on the dendrites of layer IIIC cortico-cortical and layer V cortico-subcortical projecting pyramidal neurons in a large sample of human prefrontal cortices in subjects ranging in age from newborn to 91 y. We confirm that dendritic spine density in childhood exceeds adult values by two- to threefold and begins to decrease during puberty. However, we also obtained evidence that overproduction and developmental remodeling, including substantial elimination of synaptic spines, continues beyond adolescence and throughout the third decade of life before stabilizing at the adult level. Such an extraordinarily long phase of developmental reorganization of cortical neuronal circuitry has implications for understanding the effect of environmental impact on the development of human cognitive and emotional capacities as well as the late onset of human-specific neuropsychiatric disorders.


Asunto(s)
Espinas Dendríticas/metabolismo , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Corteza Prefrontal/citología , Células Piramidales/citología , Células Piramidales/crecimiento & desarrollo , Adulto Joven
19.
Coll Antropol ; 35 Suppl 1: 345-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21648359

RESUMEN

Jelena Krmpotic-Nemanic (1921-2008) was a world-famous anatomist, internationally distinguished otolaryngologist, a member of the Croatian Academy of Sciences & Arts and appreciated professor at the School of Medicine University of Zagreb. The founding influence in her scientific career came from her mentor Drago Perovid who was a student of Ferdinand Hochstetter, the leading authority in the field of human developmental neuroanatomy and embryology. Such an influence was obviously important in early shaping of the research agenda of Jelena Krmpotic-Nemanic, and it remains important in a long series of studies on developing human telencephalon initiated by Ivica Kostovic and his collaborators - with an always present and active support of Jelena Krmpotic-Nemanic. The aim of this mini review is to briefly describe her numerous contributions to the anatomy of the human peripheral and central nervous system.


Asunto(s)
Neuroanatomía/historia , Croacia , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Neuroanatomía/educación
20.
Ann N Y Acad Sci ; 1225 Suppl 1: E105-30, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21599691

RESUMEN

The Zagreb Collection of developing and adult human brains was founded in 1974 by Ivica Kostovic and consists of 1,278 developing and adult human brains, including 610 fetal, 317 children, and 359 adult brains. It is one of the largest collections of developing human brains. The collection serves as a key resource for many focused research projects and has led to several seminal contributions on mammalian cortical development, such as the discovery of the transient fetal subplate zone and of early bilaminar synaptogenesis in the embryonic and fetal human cerebral cortex, and the first description of growing afferent pathways in the human fetal telencephalon. The Zagreb Collection also serves as a core resource for ever-growing networks of international collaboration and represents the starting point for many young investigators who now pursue independent research careers at leading international institutions. The Zagreb Collection, however, remains underexploited owing to a lack of adequate funding in Croatia. Funding could establish an online catalog of the collection and modern virtual microscopy scanning methods to make the collection internationally more accessible.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo/anatomía & histología , Academias e Institutos , Adulto , Anatomía Transversal , Bancos de Muestras Biológicas/historia , Bancos de Muestras Biológicas/organización & administración , Investigación Biomédica , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Niño , Croacia , Embrión de Mamíferos/anatomía & histología , Femenino , Feto/anatomía & histología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...