Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Plant Sci ; 14: 1148222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546259

RESUMEN

Phytophthora infestans, a representative of phytopathogenic oomycetes, have been proven to cope with redundant sources of internal and host-derived reactive nitrogen species (RNS). To gain insight into its nitrosative stress resistance mechanisms, metabolic sensors activated in response to nitrosative challenge during both in vitro growth and colonization of the host plant were investigated. The conducted analyses of gene expression, protein accumulation, and enzyme activity reveal for the first time that P. infestans (avirulent MP946 and virulent MP977 toward potato cv. Sarpo Mira) withstands nitrosative challenge and has an efficient system of RNS elimination. The obtained data indicate that the system protecting P. infestans against nitric oxide (NO) involved the expression of the nitric oxide dioxygenase (Pi-NOD1) gene belonging to the globin family. The maintenance of RNS homeostasis was also supported by an elevated S-nitrosoglutathione reductase activity and upregulation of peroxiredoxin 2 at the transcript and protein levels; however, the virulence pattern determined the expression abundance. Based on the experiments, it can be concluded that P. infestans possesses a multifarious system of metabolic sensors controlling RNS balance via detoxification, allowing the oomycete to exist in different micro-environments flexibly.

2.
Mol Plant Microbe Interact ; 36(11): 677-681, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37470431

RESUMEN

CRISPR-Cas editing systems have proved to be powerful tools for functional genomics research, but their effectiveness in many non-model species remains limited. In the potato and tomato pathogen Phytophthora infestans, an editing system was previously developed that expresses the Lachnospiracae bacterium Cas12a endonuclease (LbCas12a) and guide RNA from a DNA vector. However, the method works at low efficiency. Based on a hypothesis that editing is constrained by a mismatch between the optimal temperatures for P. infestans growth and endonuclease catalysis, we tested two strategies that increased the frequency of editing of two target genes by about 10-fold. First, we found that editing was boosted by a mutation in LbCas12a (D156R) that had been reported to expand its catalytic activity over a broader temperature range. Second, we observed that editing was enhanced by transiently incubating transformed tissue at a higher temperature. These modifications should make CRISPR-Cas12a more useful for interrogating gene and protein function in P. infestans and its relatives, especially species that grow optimally at lower temperatures. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Edición Génica , Phytophthora infestans , Phytophthora infestans/genética , Temperatura , ARN Guía de Sistemas CRISPR-Cas , Endonucleasas
3.
PLoS Pathog ; 18(10): e1010869, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215336

RESUMEN

Natural isolates of the potato and tomato pathogen Phytophthora infestans exhibit substantial variation in virulence, chemical sensitivity, ploidy, and other traits. A chromosome-scale assembly was developed to expand genomic resources for this oomyceteous microbe, and used to explore the basis of variation. Using PacBio and Illumina data, a long-range linking library, and an optical map, an assembly was created and coalesced into 15 pseudochromosomes spanning 219 Mb using SNP-based genetic linkage data. De novo gene prediction combined with transcript evidence identified 19,981 protein-coding genes, plus about eight thousand tRNA genes. The chromosomes were comprised of a mosaic of gene-rich and gene-sparse regions plus very long centromeres. Genes exhibited a biased distribution across chromosomes, especially members of families encoding RXLR and CRN effectors which clustered on certain chromosomes. Strikingly, half of F1 progeny of diploid parents were polyploid or aneuploid. Substantial expression level polymorphisms between strains were identified, much of which could be attributed to differences in chromosome dosage, transposable element insertions, and adjacency to repetitive DNA. QTL analysis identified a locus on the right arm of chromosome 3 governing sensitivity to the crop protection chemical metalaxyl. Strains heterozygous for resistance often experienced megabase-sized deletions of that part of the chromosome when cultured on metalaxyl, increasing resistance due to loss of the sensitive allele. This study sheds light on diverse phenomena affecting variation in P. infestans and relatives, helps explain the prevalence of polyploidy in natural populations, and provides a new foundation for biologic and genetic investigations.


Asunto(s)
Productos Biológicos , Phytophthora infestans , Solanum tuberosum , Humanos , Phytophthora infestans/genética , Elementos Transponibles de ADN , Solanum tuberosum/genética , Cariotipo
4.
Microbiol Resour Announc ; 10(21): e0029521, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042486

RESUMEN

The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.

5.
Mol Plant Pathol ; 22(6): 737-752, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33724663

RESUMEN

Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia-like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes.


Asunto(s)
Edición Génica , Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Alelos , Sistemas CRISPR-Cas , Cromatina/genética , Genómica , Phytophthora infestans/fisiología
6.
Plant Biotechnol J ; 19(9): 1756-1768, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33774895

RESUMEN

Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.


Asunto(s)
Silenciador del Gen , ARN Bicatenario , Ascomicetos , Botrytis , Colletotrichum , Enfermedades de las Plantas , Interferencia de ARN , ARN Bicatenario/genética , Rhizoctonia
7.
Sci Rep ; 10(1): 22326, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339950

RESUMEN

To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI-MS, 1H-NMR, and 13C-NMR identified ß-rubromycin as the inhibitor of cyst germination (IC50 = 19.8 µg/L); ß-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that ß-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that ß-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Esporas Fúngicas/genética , Secuencia de Aminoácidos/genética , Phytophthora infestans/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinonas/farmacología , Esporas Fúngicas/patogenicidad
8.
mBio ; 11(5)2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051363

RESUMEN

The oomycete Phytophthora infestans, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the P. infestans genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.IMPORTANCE Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that Phytophthora invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the Phytophthora lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.


Asunto(s)
Hifa/enzimología , Phytophthora infestans/enzimología , Phytophthora infestans/genética , Solanum lycopersicum/microbiología , beta-Fructofuranosidasa/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Solanum tuberosum/microbiología
9.
mBio ; 11(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576669

RESUMEN

The plant pathogen that caused the Irish potato famine, Phytophthora infestans, continues to reemerge globally. These modern epidemics are caused by clonally reproducing lineages. In contrast, a sexual mode of reproduction is observed at its center of origin in Mexico. We conducted a comparative genomic analysis of 47 high-coverage genomes to infer changes in genic copy number. We included samples from sexual populations at the center of origin as well as several dominant clonal lineages sampled worldwide. We conclude that sexual populations at the center of origin are diploid, as was the lineage that caused the famine, while modern clonal lineages showed increased copy number (3×). Copy number variation (CNV) was found genome-wide and did not to adhere to the two-speed genome hypothesis. Although previously reported, tetraploidy was not found in any of the genomes evaluated. We propose a model of dominant clone emergence supported by the epidemiological record (e.g., EU_13_A2, US-11, US-23) whereby a higher copy number provides fitness, leading to replacement of prior clonal lineages.IMPORTANCE The plant pathogen implicated in the Irish potato famine, Phytophthora infestans, continues to reemerge globally. Understanding changes in the genome during emergence can provide insights useful for managing this pathogen. Previous work has relied on studying individuals from the United States, South America, Europe, and China reporting that these can occur as diploids, triploids, or tetraploids and are clonal. We studied variation in sexual populations at the pathogen's center of origin, in Mexico, where it has been reported to reproduce sexually as well as within clonally reproducing, dominant clones from the United States and Europe. Our results newly show that sexual populations at the center of origin are diploid, whereas populations elsewhere are more variable and show genome-wide variation in gene copy number. We propose a model of evolution whereby new pathogen clones emerge predominantly by increasing the gene copy number genome-wide.


Asunto(s)
Variaciones en el Número de Copia de ADN , Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Genoma , Filogenia , Phytophthora infestans/patogenicidad , Alineación de Secuencia
10.
Mol Plant Microbe Interact ; 33(5): 742-753, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32237964

RESUMEN

Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.


Asunto(s)
Genoma Mitocondrial , Peronospora/genética , Genómica , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas
11.
Front Microbiol ; 10: 1479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316493

RESUMEN

The oomycete Phytophthora infestans is the causal agent of tomato and potato late blight, a disease that causes tremendous economic losses in the production of solanaceous crops. The similarities between oomycetes and the apicomplexa led us to hypothesize that dihydroorotate dehydrogenase (DHODH), the enzyme catalyzing the fourth step in pyrimidine biosynthetic pathway, and a validated drug target in treatment of malaria, could be a potential target for controlling P. infestans growth. In eukaryotes, class 2 DHODHs are mitochondrially associated ubiquinone-linked enzymes that catalyze the fourth, and only redox step of de novo pyrimidine biosynthesis. We characterized the enzymes from both the pathogen and a host, Solanum tuberosum. Plant DHODHs are known to be class 2 enzymes. Sequence analysis suggested that the pathogen enzyme (PiDHODHs) also belongs to this class. We confirmed the mitochondrial localization of GFP-PiDHODH showing colocalization with mCherry-labeled ATPase in a transgenic pathogen. N-terminally truncated versions of the two DHODHs were overproduced in E. coli, purified, and kinetically characterized. StDHODH exhibited a apparent specific activity of 41 ± 1 µmol min-1 mg-1, a kcat app of 30 ± 1 s-1, and a Km app of 20 ± 1 µM for L-dihydroorotate, and a Km app= 30 ± 3 µM for decylubiquinone (Qd). PiDHODH exhibited an apparent specific activity of 104 ± 1 µmol min-1 mg-1, a kcat app of 75 ± 1 s-1, and a Km app of 57 ± 3 µM for L-dihydroorotate, and a Km app of 15 ± 1 µM for Qd. The two enzymes exhibited different activities with different quinones and napthoquinone derivatives, and different sensitivities to compounds known to cause inhibition of DHODHs from other organisms. The IC50 for A77 1726, a nanomolar inhibitor of human DHODH, was 2.9 ± 0.6 mM for StDHODH, and 79 ± 1 µM for PiDHODH. In vivo, 0.5 mM A77 1726 decreased mycelial growth by approximately 50%, after 92 h. Collectively, our findings suggest that the PiDHODH could be a target for selective inhibitors and we provide a biochemical background for the development of compounds that could be helpful for the control of the pathogen, opening the way to protein crystallization.

12.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289172

RESUMEN

The oomycete pathogen Phytophthora infestans causes potato and tomato late blight, a disease that is a serious threat to agriculture. P. infestans is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of P. infestans on that of tomato. This showed, for example, that P. infestans, a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses, P. infestans performs less de novo synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the P. infestans-tomato interaction provides a framework to integrate data and generate hypotheses about in planta nutrition of P. infestans throughout its infection cycle.IMPORTANCE Late blight disease caused by the oomycete pathogen Phytophthora infestans leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying P. infestans proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of P. infestans to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that P. infestans obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition in planta.


Asunto(s)
Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Phytophthora infestans/metabolismo , Solanum lycopersicum/parasitología , Perfilación de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Análisis de Flujos Metabólicos , Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/parasitología , Tiamina/metabolismo
13.
PLoS Pathog ; 15(4): e1007729, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31002734

RESUMEN

The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.


Asunto(s)
Proteínas Fúngicas/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Nutrientes/metabolismo , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Adaptación Fisiológica , Evolución Molecular , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Phytophthora/clasificación , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/parasitología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/parasitología
14.
Mol Plant Microbe Interact ; 32(9): 1077-1087, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30908943

RESUMEN

Sporangia of the potato late blight agent Phytophthora infestans are often used in studies of pathogen biology and plant responses to infection. Investigations of spore biology can be challenging in oomycetes because their sporangia are physiologically active and change in response to environmental factors and aging. Whether sporangia from artificial media and plant lesions are functionally equivalent has been a topic of debate. To address these issues, we compared the transcriptomes and infection ability of sporangia from rye-sucrose media, potato and tomato leaflets, and potato tubers. Small differences were observed between the mRNA profiles of sporangia from all sources, including variation in genes encoding metabolic enzymes, cell-wall-degrading enzymes, and ABC transporters. Small differences in sporangia age also resulted in variation in the transcriptome. Taking care to use sporangia of similar maturity, we observed that those sourced from media or plant lesions had similar rates of zoospore release and cyst germination. There were also no differences in infection rates or aggressiveness on leaflets, based on single-spore inoculation assays. Such results are discordant with those of a recent publication in this journal. Nevertheless, we conclude that sporangia from plant and media cultures are functionally similar and emphasize the importance of using "best practices" in experiments with sporangia to obtain reliable results.


Asunto(s)
Regulación de la Expresión Génica , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Esporangios , Perfilación de la Expresión Génica , Solanum lycopersicum/parasitología , Phytophthora infestans/genética , Solanum tuberosum/parasitología , Esporangios/genética , Transcriptoma
15.
Mol Plant Microbe Interact ; 32(8): 915-927, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30811313

RESUMEN

DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora spp. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spread to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5' ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for 12 different gene targets indicated that neighbors within 500 nt were often cosilenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, this cis spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not cosilenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora spp. but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.


Asunto(s)
Silenciador del Gen , Genómica , Phytophthora infestans , Transgenes , Phytophthora infestans/genética , Transgenes/genética
17.
Methods Mol Biol ; 1848: 119-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30182233

RESUMEN

Phytophthora species cause diseases that threaten agricultural, ornamental, and forest plants worldwide. Explorations of the biology of these pathogens have been aided by the availability of genome sequences, but much work remains to decipher the roles of their proteins. Insight into protein function can be obtained by visualizing them within cells, which has been facilitated by recent improvements in fluorescent protein and microscope technologies. Here, we describe strategies to permit investigators to generate strains of Phytophthora that express fluorescently tagged proteins and study their localization during growth in artificial media and during plant infection.


Asunto(s)
Etiquetas de Secuencia Expresada , Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Phytophthora/fisiología , Técnica del Anticuerpo Fluorescente , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas Recombinantes de Fusión , Transformación Genética
18.
Mol Microbiol ; 110(4): 562-575, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194883

RESUMEN

MADS-box transcription factors play significant roles in eukaryotes, but have not yet been characterized in oomycetes. Here, we describe a MADS-box protein from Phytophthora infestans, which causes late blight of potato. P. infestans and most other oomycetes express a single MADS-box gene. PiMADS is not transcribed during vegetative growth, but is induced early during asexual sporulation. Its mRNA levels oscillate in response to light, which suppresses sporulation. The protein was not detected in nonsporulating mycelia, but was found in sporulating mycelia and spores. Both mRNA and protein levels decline upon spore germination. A similar expression pattern as well as nuclear localization was observed when the protein was expressed with a fluorescent tag from the native promoter. Gene silencing triggered by a construct expressing 478 nt of MADS sequences indicated that PiMADS is required for sporulation but not hyphal growth or plant colonization. A comparison of wild type to a silenced strain by RNA-seq indicated that PiMADS regulates about 3000 sporulation-associated genes, and acts before other genes previously shown to regulate sporulation. Analysis of the silenced strain also indicated that the native gene was not transcribed while the transgene was still expressed, which contradicts current models for homology-dependent silencing in oomycetes.


Asunto(s)
Proteínas de Dominio MADS/genética , Micelio/metabolismo , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/genética , Esporas Protozoarias/crecimiento & desarrollo , Esporas Protozoarias/genética , Regulación de la Expresión Génica , Silenciador del Gen , Genoma de Protozoos/genética , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Esporas Protozoarias/metabolismo , Factores de Transcripción/metabolismo
19.
Mol Microbiol ; 110(2): 296-308, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30137656

RESUMEN

Flagellated spores play important roles in the infection of plants and animals by many eukaryotic microbes. The oomycete Phytophthora infestans, which causes potato blight, expresses two phosphagen kinases (PKs). These enzymes store energy in taurocyamine, and are hypothesized to resolve spatial and temporal imbalances between rates of ATP creation and use in zoospores. A dimeric PK is found at low levels in vegetative mycelia, but high levels in ungerminated sporangia and zoospores. In contrast, a monomeric PK protein is at similar levels in all tissues, although is transcribed primarily in mycelia. Subcellular localization studies indicate that the monomeric PK is mitochondrial. In contrast, the dimeric PK is cytoplasmic in mycelia and sporangia but is retargeted to flagellar axonemes during zoosporogenesis. This supports a model in which PKs shuttle energy from mitochondria to and through flagella. Metabolite analysis indicates that deployment of the flagellar PK is coordinated with a large increase in taurocyamine, synthesized by sporulation-induced enzymes that were lost during the evolution of zoospore-lacking oomycetes. Thus, PK function is enabled by coordination of the transcriptional, metabolic and protein targeting machinery during the life cycle. Since plants lack PKs, the enzymes may be useful targets for inhibitors of oomycete plant pathogens.


Asunto(s)
Flagelos/enzimología , Regulación de la Expresión Génica/fisiología , Fosfotransferasas/metabolismo , Phytophthora infestans/enzimología , Esporas/enzimología , Adenosina Trifosfato/metabolismo , Animales , Citoplasma/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Mitocondrias/metabolismo , Fosfotransferasas/genética , Phytophthora infestans/genética , Esporangios/enzimología , Taurina/análogos & derivados , Taurina/metabolismo
20.
Phytopathology ; 108(8): 916-924, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29979126

RESUMEN

The infamous oomycete Phytophthora infestans has been a persistent threat to potato and tomato production worldwide, causing the diseases known as late blight. This pathogen has proved to be remarkably adept at overcoming control strategies including host-based resistance and fungicides. This review describes the features of P. infestans that make it such a daunting challenge to agriculture. These include a stealthy lifestyle that helps P. infestans evade plant defenses, effectors that suppress host defenses and promote susceptibility, profuse sporulation with a short latent period that enables rapid dissemination, and a genome structure that promotes the adaptive evolution of P. infestans by fostering genetic diversity. Nevertheless, there is reason to be optimistic that accumulated knowledge about the biology of P. infestans and its hosts will lead to improved management of late blight.


Asunto(s)
Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum , Solanum tuberosum , Phytophthora infestans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...