Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromolecules ; 57(5): 1979-1987, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38495387

RESUMEN

Homopolymerization of ortho-nitrobenzyl (oNB)-protected l-cysteine and l-glutamic acid was systematically studied in different solvents and at different monomer to initiator ratios, revealing the best reaction control in dimethylformamide (DMF) across a range of degrees of polymerization. In the subsequent ultraviolet (UV)-cleavage studies, it was found that quantitative deprotection upon UV exposure at 365 nm was not achievable for either of the homopolypeptides as confirmed by 1H NMR and UV/visible (UV/vis) analyses. While the poly(oNB-l-cysteine) deprotected more readily with no effect of the polypeptide molecular weight, lower molecular weight poly(oNB-l-glutamate) reached maximum deprotection faster than high molecular weight samples. This was further confirmed by the pH changes of the solution. When incorporated into the core of miniemulsion-derived nanoparticles, both oNB-protected copolypeptides were successfully deprotected as evident from a color change and a pH change in the case of poly(oNB-l-glutamate). However, the removal of the deprotection byproduct nitrosobenzaldehyde proved unsuccessful, which indicates a diffusion barrier caused by the nanoparticle's surfactant. The study provides insights and guidelines for the UV deprotection of polypeptides and demonstrates the ability to selectively UV-deprotect polypeptides in the confined space of a nanoparticle dispersion.

2.
Biomacromolecules ; 24(6): 2459-2468, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37303170

RESUMEN

Ice-binding proteins (IBPs) from extremophile organisms can modulate ice formation and growth. There are many (bio)technological applications of IBPs, from cryopreservation to mitigating freeze-thaw damage in concrete to frozen food texture modifiers. Extraction or expression of IBPs can be challenging to scale up, and hence polymeric biomimetics have emerged. It is, however, desirable to use biosourced monomers and heteroatom-containing backbones in polymers for in vivo or environmental applications to allow degradation. Here we investigate high molecular weight polyproline as an ice recrystallization inhibitor (IRI). Low molecular weight polyproline is known to be a weak IRI. Its activity is hypothesized to be due to the unique PPI helix it adopts, but it has not been thoroughly investigated. Here an open-to-air aqueous N-carboxyanhydride polymerization is employed to obtain polyproline with molecular weights of up to 50000 g mol-1. These polymers were found to have IRI activity down to 5 mg mL-1, unlike a control peptide of polysarcosine, which did not inhibit all ice growth at up to 40 mg mL-1. The polyprolines exhibited lower critical solution temperature behavior and assembly/aggregation observed at room temperature, which may contribute to its activity. Single ice crystal assays with polyproline led to faceting, consistent with specific ice-face binding. This work shows that non-vinyl-based polymers can be designed to inhibit ice recrystallization and may offer a more sustainable or environmentally acceptable, while synthetically scalable, route to large-scale applications.


Asunto(s)
Hielo , Péptidos , Peso Molecular , Inhibidores de Crecimiento
3.
ACS Appl Mater Interfaces ; 14(27): 30546-30556, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35748507

RESUMEN

Conventional micelles of amphiphilic block copolymers (BCPs) disassemble into individual polymer chains upon dilution to a critical concentration, which causes the premature release of the encapsulated drugs and reduces the drug's bioavailability. Here, by integrating the emerging metal-organic cage (MOC) materials with BCPs, we introduce a new type of composite micellar nanoparticles, block co-polyMOC micelles (or BCPMMs), that are self-assembled in essence yet remarkably stable against dilution. BCPMMs are fabricated via a stepwise assembly strategy that combines MOCs and BCPs in a well-defined, unimolecular core-shell structure. The synergistical interplay between the two components accounts for the particle stability: the MOC core holds BCPs firmly in place and the BCPs increase the MOC's bioavailability. When used as nanocarriers for anticancer drugs, BCPMMs showed an extended blood circulation, a favorable biodistribution, and eventually an improved treatment efficacy in vivo. Given the versatility in designing MOCs and BCPs, we envision that BCPMMs can serve as a modular platform for robust, multifunctional, and tunable nanomedicine.


Asunto(s)
Antineoplásicos , Nanopartículas , Antineoplásicos/química , Antineoplásicos/farmacología , Micelas , Nanopartículas/química , Polímeros/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA