Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505957

RESUMEN

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

2.
Phys Rev Lett ; 131(26): 262501, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215380

RESUMEN

The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models.

3.
Phys Rev Lett ; 125(19): 192501, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216605

RESUMEN

The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.

4.
Phys Rev Lett ; 121(14): 142701, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339438

RESUMEN

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the ß-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the ß-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{ß,11}=(5.02±0.10)×10^{-2}] and for ß-delayed α emission [b_{ßα}=(1.59±0.06)×10^{-5}]. Our value for b_{ßα} is 33% larger than previously held, leading to a substantial increase in γ_{11}. Our revised value for γ_{11} is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11}, which provides significantly improved constraints on the ^{12}C(α,γ) cross section in the energy range relevant to hydrostatic He burning.

5.
Phys Rev Lett ; 115(22): 222502, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26650299

RESUMEN

The isospin mixing was deduced in the compound nucleus ^{80}Zr at an excitation energy of E^{*}=54 MeV from the γ decay of the giant dipole resonance. The reaction ^{40}Ca+^{40}Ca at E_{beam}=136 MeV was used to form the compound nucleus in the isospin I=0 channel, while the reaction ^{37}Cl+^{44}Ca at E_{beam}=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr_{3}:Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δ_{C} used for the Fermi superallowed transitions was extracted and found to be consistent with ß-decay data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...