Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Intervalo de año de publicación
1.
Neotrop Entomol ; 53(4): 726-737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954393

RESUMEN

Various factors, including environmental variables, influence the behavior of aquatic insects. However, our understanding of insect behavior and their relationships with these variables remains limited. One important variable is water turbidity, which may be exacerbated by soil erosion, directly impacting visibility in the water and potentially affecting the organism's behaviors. In this study, we investigated larval behavior across seven Odonata species under controlled conditions, examining variations in behavioral diversity (frequency and type) associated with sex and three levels of water turbidity. Our findings revealed that heightened water turbidity correlated with increased behavior frequency, possibly attributable to predator avoidance in darker, seemingly safer habitats. Furthermore, behavior diversity differed between sexes, being higher for males in certain categories and for females in others. Anisoptera species predominantly displayed behaviors like resting, eating, and prey capture, whereas Zygoptera larvae were often observed perching and walking, possibly indicative of distinct predator response strategies. Behaviors shared by Anisoptera larvae could be associated with similar responses to predators and capture of prey. Our study found an increased frequency of behaviors when the larvae are in water with higher turbidity. Behavior frequency disparities between the sexes were observed across various behaviors, likely influenced by species-specific activity levels and individual behavioral plasticity in response to environmental cues. Overall, individuals exhibited heightened behavioral activity in environments with elevated turbidity, potentially reflecting a perceived lower risk environment.


Asunto(s)
Conducta Animal , Larva , Odonata , Animales , Masculino , Femenino , Agua
2.
Environ Monit Assess ; 196(8): 737, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009907

RESUMEN

Aquatic ecosystems are among the most affected by anthropogenic impacts, and the rapid detection and measurement of these impacts are of great importance for the maintenance of such environments. The order of aquatic insects Odonata has emerged as an important bioindicator of environmental quality due to its sensitivity to environmental changes and its ecophysiological requirements, which make them closely associated with habitat conditions. The aim of this study was to test whether the Zygoptera/Anisoptera ratio can be used as an effective tool to assess anthropogenic changes in Cerrado streams. Our hypothesis is that the proportion of Zygoptera/Anisoptera is an efficient tool for measuring environmental alterations in Cerrado streams, with a positive relationship between habitat integrity and the proportion of Zygoptera and an inverse relationship with the proportion of Anisoptera. Adults were collected in 44 streams of the Cerrado Biome in the eastern Maranhão state. The Habitat Integrity Index (HII) was used to verify the environmental gradient. Our hypothesis was corroborated, with a positive relationship between the richness and abundance of Zygoptera and HII, while an inverse relationship was observed for Anisoptera. According to our results, streams exhibiting a Zygoptera abundance of 68% or higher and richness of 58% or higher can be classified as preserved, while those showing an Anisoptera abundance and richness surpassing 31% and 41%, respectively, may be deemed altered. The patterns detected in the Cerrado were similar to those found in studies of the Amazon Biome and the Atlantic Forest, confirming the effectiveness of this method even for naturally open environments, such as the Cerrado. We conclude, therefore, that this method can be used as a tool to generate rapid results in monitoring studies, with low cost and easy application, enabling the development of mitigation, control, and conservation measures for extremely threatened environments such as those found in the Cerrado Biome.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Odonata , Ríos , Animales , Brasil , Ríos/química , Monitoreo del Ambiente/métodos , Biodiversidad
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230102, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705182

RESUMEN

Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Biodiversidad , Insectos , Insectos/fisiología , Animales , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Países en Desarrollo , Entomología/métodos , Ecosistema , Cambio Climático
4.
Sci Total Environ ; 934: 173110, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740211

RESUMEN

Discerning the impact of anthropogenic impacts requires the implementation of bioindicators that quantify the susceptibilities and vulnerabilities of natural terrestrial and aquatic ecosystems to perturbation and transformation. Although legal regulations in Brazil recognize the value of bioindicators in monitoring water quality, the depreciation of soil conditions has yet to receive adequate attention. Thus, our study aimed to evaluate the potential of odonates (dragonflies and damselflies) as amphibiotic bioindicators to reflect the correlation between the degradation of aquatic and terrestrial habitats in pasture-dominated landscapes. We assessed the relationship between the biotic indices of Odonata and the conservation status of preserved riparian landscapes adjacent to anthropogenically altered pastures in 40 streams in the Brazilian savannah. Our results support the hypothesis that Odonata species composition may be a surrogate indicator for soil and water integrity, making them promising sentinels for detecting environmental degradation and guiding conservation strategies in human-altered landscapes. Importantly, while the Zygoptera/Anisoptera species ratio is a useful bioindicator tool in Brazilian forest, it is less effective in the open savannah here, and so an alternative index is required. Importantly, while the Zygoptera/Anisoptera species ratio is a useful bioindicator tool in Brazilian forest, it is less effective in the open savannah here, and so an alternative index is required. On the other hand, our results showed the Dragonfly Biotic Index to be a suitable tool for assessing freshwater habitats in Brazilian savannah. We also identified certain bioindicator species at both ends of the environment intactness spectrum.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce , Odonata , Suelo , Animales , Brasil , Monitoreo del Ambiente/métodos , Suelo/química , Ecosistema
5.
Neotrop Entomol ; 53(3): 630-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656590

RESUMEN

Diverse abiotic and biotic factors drive the ecological variation of communities across spatial and temporal dimensions. Within the Amazonian landscape, various freshwater environments exhibit distinct physicochemical characteristics. Thus, our study delved into the fluctuations of Odonata assemblages amidst distinct water bodies within Amazonia, encompassing two distinct climatic seasons. Comparative analysis was conducted on Odonata species diversity and assemblage composition across a blackwater pond, a lake, and a stream, spanning the initiation and culmination of the dry season in the southwestern Amazon region in Peru. Our methodology involved capturing adult Odonata using entomological nets on three separate occasions between 11:00 and 14:00 h for each water body in May (beginning of the dry season) and October (end of the dry season) of 2018. We also evaluated the influence of temperature, precipitation, and percent cloud cover on the abundance and richness of adult Odonata. Species richness and composition differed among the three water bodies in both periods of the dry season. No effect of the dry season periods on species richness and abundance was observed. However, except in the oxbow lake, the more abundant species were substituted to the end of the dry season. Our study highlights the influence of water body types on Odonata species diversity and composition. The effects of the sampling period during the dry season may not be immediately apparent in conventional diversity metrics, such as species richness and abundance. Instead, its effects manifest predominantly in the relative abundance of the species that compose these assemblages.


Asunto(s)
Biodiversidad , Lagos , Odonata , Estaciones del Año , Animales , Perú , Odonata/clasificación , Estanques , Ríos , Temperatura
6.
Neotrop Entomol ; 53(3): 617-629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656588

RESUMEN

Experiments are useful scientific tools for testing hypotheses by manipulating variables of interest while controlling for other factors that can bias or confuse the results and their interpretation. To ensures accuracy and reproducibility, experiments must have transparent and repeatable methodologies. Due to the importance of shredder invertebrates in organic matter processing, carbon cycling, and nutrient cycling, we tested experimentally the effect of different methodological approaches in microcosm experiments on the consumption and survival of shredders. We found that the shredder species, the presence or absence of the case, and the use or non-use of air-pumps in the microcosms did not affect shredder performance (i.e., consumption and survival). Furthermore, the type of water (stream or bottled) did not affect shredder performance. On the other hand, the amount of light had a negative effect on shredder performance, with constant light (i.e., 24 h) reducing shredder consumption and survival. Our results demonstrate that the use of different methodologies does not always result in changes in outcomes, thus ensuring comparability. However, luminosity is a critical factor that deserves attention when conducting microcosm experiments. Our findings provide valuable insights that can assist researchers in designing experiments with shredders from neotropical streams and conducting systematic reviews and meta-analyses.


Asunto(s)
Ríos , Animales , Invertebrados , Reproducibilidad de los Resultados , Luz , Proyectos de Investigación
7.
Environ Monit Assess ; 196(3): 281, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368304

RESUMEN

The evaluation of environmental and spatial influence in freshwater systems is crucial for the conservation of aquatic diversity. So, we evaluated communities of Odonata in streams inside and outside sustainable use areas in the Brazilian western Amazon. We predicted that these streams would differ regarding habitat integrity and species α and ß diversity. We also predict that environmental and spatial variables will be important for both suborders, but with more substantial effects on Zygoptera species, considering their nature of forest-specialist. The study was conducted in 35 streams, 19 inside and 16 outside sustainable use areas. The streams outside presented high species richness, abundance, and number of exclusive forest-specialist species from Zygoptera and higher scores of habitat integrity. In contrast, one sustainable use area presented the lowest values of these metrics. Besides, we found that environmental and spatial variables were significantly associated to Zygoptera species composition, but not with Anisoptera, which can be explained by their cosmopolitan nature. Our results indicated that an interplay between environmental and spatial processes determines the structure of the metacommunities of Zygoptera. The less effective dispersal rates and narrow ecological tolerance of Zygoptera species make them more influenced by local conditions and dispersal limitation, and more sensible to habitat modifications. We highlight the importance of improving the local management of the sustainable use areas by environmental agencies, mainly on areas that are losing their capacity to maintain the aquatic fauna, and implementation of social policies toward traditional people.


Asunto(s)
Odonata , Humanos , Animales , Ríos , Brasil , Monitoreo del Ambiente , Ecosistema , Insectos , Biodiversidad
8.
Conserv Biol ; 38(1): e14172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650444

RESUMEN

The expansion of oil palm plantations has led to land-use change and deforestation in the tropics, which has affected biodiversity. Although the impacts of the crop on terrestrial biodiversity have been extensively reviewed, its effects on freshwater biodiversity remain relatively unexplored. We reviewed the research assessing the impacts of forest-to-oil palm conversion on freshwater biota and the mitigating effect of riparian buffers on these impacts. We searched for studies comparing taxa richness, species abundance, and community composition of macroinvertebrates, amphibians, and fish in streams in forests (primary and disturbed) and oil palm plantations with and without riparian buffers. Then, we conducted a meta-analysis to quantify the overall effect of the land-use change on the 3 taxonomic groups. Twenty-nine studies fulfilled the inclusion criteria. On average, plantations lacking buffers hosted 44% and 19% fewer stream taxa than primary and disturbed forests, respectively. Stream taxa on plantations with buffers were 24% lower than in primary forest and did not differ significantly from disturbed forest. In contrast, stream community composition differed between forests and plantations regardless of the presence of riparian buffers. These differences were attributed to agrochemical use and altered environmental conditions in the plantations, including temperature changes, worsened water conditions, microhabitat loss, and food and shelter depletion. On aggregate, abundance did not differ significantly among land uses because increases in generalist species offset the population decline of vulnerable forest specialists in the plantation. Our results reveal significant impacts of forest-to-oil palm conversion on freshwater biota, particularly taxa richness and composition (but not aggregate abundance). Although preserving riparian buffers in the plantations can mitigate the loss of various aquatic species, it cannot conserve primary forest communities. Therefore, safeguarding primary forests from the oil palm expansion is crucial, and further research is needed to address riparian buffers as a promising mitigation strategy in agricultural areas.


Metaanálisis contrastando la biodiversidad de agua dulce en los bosques y las plantaciones de palma de aceite con o sin bosques ribereños Resumen La expansión de las plantaciones de palma de aceite ha derivado en cambios en el uso de suelo y deforestación en los trópicos, afectando a la biodiversidad. Existe una revisión extensa del impacto de este cultivo sobre la biodiversidad terrestre, pero sus efectos sobre la biodiversidad de agua dulce todavía no están muy documentados. Revisamos las investigaciones que han evaluado el impacto de la conversión de bosque a plantación de palma de aceite sobre la biota de agua dulce y el efecto mitigante que tienen los bosques ribereños sobre este impacto. Buscamos estudios que compararan la riqueza de taxones, abundancia de especies y composición comunitaria de los macroinvertebrados, anfibios y peces en los riachuelos de los bosques (primarios y perturbados) y los sembradíos de palma de aceite con y sin bosques ribereños. Después realizamos un metaanálisis para cuantificar el efecto del cambio de uso de suelo en los tres grupos taxonómicos. Veintinueve estudios cumplieron con el criterio de inclusión. En promedio, las plantaciones carentes de bosques ribereños albergaron 44% y 19% menos taxones que los bosques primarios y perturbados. Los taxones en los sembradíos con bosques ribereños fueron 24% menos que en el bosque primario y no difirieron significativamente del bosque perturbado. Como contraste, la composición comunitaria del riachuelo difirió entre los bosques y los sembradíos sin importar la presencia de los bosques ribereños. Atribuimos estas diferencias al uso de agroquímicos y las condiciones ambientales alteradas en las plantaciones, incluidas los cambios térmicos, condiciones hidrológicas alteradas, pérdida de microhábitats y reducción de alimentos y refugios. En general, la abundancia no difirió significativamente entre los usos de suelo porque el incremento de especies generalistas en las plantaciones contrarresta la declinación poblacional de los especialistas de bosque vulnerables. Nuestros resultados revelan un impacto significativo de la conversión de bosque a plantación sobre la biota de agua dulce, particularmente la riqueza de taxones y la composición (pero no la abundancia agregada). Aunque mantener los bosques ribereños en las plantaciones puede mitigar la pérdida de varias especies acuáticas, no puede conservar las comunidades del bosque primario. Por lo tanto, es crucial salvaguardar los bosques primarios de la expansión del aceite de palma, además de que se necesitan más investigaciones para abordar los bosques ribereños como una estrategia prometedora de mitigación en las áreas agrícolas.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Conservación de los Recursos Naturales/métodos , Bosques , Agricultura , Agua Dulce
9.
Neotrop Entomol ; 53(2): 314-322, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110657

RESUMEN

Biological communities have their biodiversity patterns affected by environmental, spatial, and biogeographic factors that vary from taxa to taxa, and often between life stages. This is especially true when there are differences in the habitat the species use in each of them. Individuals of the insect order Trichoptera are mostly aquatic in their larval stage and terrestrial in their adult stage, which may result in different behaviors and environmental requirements. Our goal was to evaluate the congruence between the larval and adult stages of Trichoptera in Amazonian streams regarding their abundance, richness, and assemblage composition. Additionally, we tried to identify the main environmental factors related to each life stage. For this, larvae and adults of Trichoptera were sampled in the same sites at 12 streams in the Caxiuanã National Forest, Pará state, Brazil. Adult assemblages had greater richness of genera and abundance of individuals than the larval ones, and there was no congruence in the genera composition between these life stages. Our results also showed that different environmental variables structured Trichoptera larvae and adults. Since the sampling of larvae and adults proved to be complementary in the studied streams, we advise that Trichoptera diversity surveys consider both life stages of these organisms.


Asunto(s)
Ecosistema , Ríos , Humanos , Animales , Biodiversidad , Bosques , Insectos , Larva/fisiología
10.
J Med Entomol ; 60(6): 1297-1304, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37769212

RESUMEN

This research aims to describe the process of ecological succession by associating the decomposition stages of pig carcasses with flies from the Calliphoridae family (Diptera). For this, 6 pig carcasses were exposed in Maranhão's Cerrado, utilizing metal cages with sawdust trays to catch immature specimens and "suspended traps" to capture adults. Adults of the Hemilucilia benoisti Séguy, and Hemilucilia townsendi Shannon species were only associated with the swelling stage. Chrysomya megacephala (Fabricius) was associated with 2 stages (black putrefaction and fermentation). The species Chloroprocta idioidea (Robineau-Desvoidy), Chrysomya albiceps (Wiedemann), Cochliomyia macellaria (Fabricius), and Lucilia eximia (Wiedemann) were associated with 4 of the 5 stages of decomposition, the latter being the only 1 associated with the initial stage. The larvae abandoned the carcasses to pupate from the second stage of decomposition, with L. eximia being the only 1 leaving the carcasses in the swelling stage, and C. albiceps the only 1 associated with both the fermentation and dry stages. Our findings indicate that calliphorid species can help forensic investigators estimine the post-mortem interval of cadavers in situations similar to those detailed in this study. Since there was a link between adult and immature species and certain stages, they can be used as indicators in future forensic investigations.


Asunto(s)
Dípteros , Enfermedades de los Porcinos , Animales , Porcinos , Calliphoridae , Brasil , Cadáver , Larva
12.
Curr Biol ; 33(16): 3495-3504.e4, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37473761

RESUMEN

Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.


Asunto(s)
Biodiversidad , Bosques , Humanos , Bosque Lluvioso , Brasil , Clima Tropical , Conservación de los Recursos Naturales , Ecosistema
13.
Ecol Evol ; 13(6): e10149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332521

RESUMEN

Discussion regarding the gaps of knowledge on Odonata is common in the literature. Such gaps are even greater when dealing with basic biological data for biodiverse environments like the Amazon Rainforest. Therefore, studies that address, classify, and standardize functional traits allow the elaboration of a wide range of ecological and evolutionary hypotheses. Moreover, such endeavors aid conservation and management planning by providing a better understanding of which functional traits are filtered or favored under environmental changes. Here, our main goal was to produce a database with 68 functional traits of 218 Odonata species that occur in the Brazilian Amazon. We extracted data on behavior, habit/habitat (larvae and adults), thermoregulation, and geographic distribution from 419 literature sources classified into different research areas. Moreover, we measured 22 morphological traits of approximately 2500 adults and categorized species distributions based on approximately 40,000 geographic records for the Americas. As a result, we provided a functional matrix and identified different functional patterns for the Odonata suborders, as well as a strong relationship between the different trait categories. For this reason, we recommend the selection of key traits that represent a set of functional variables, reducing the sampling effort. In conclusion, we detect and discuss gaps in the literature and suggest research to be developed with the present Amazonian Odonata Trait Bank (AMO-TB).

14.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994670

RESUMEN

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Asunto(s)
Artrópodos , Ecosistema , Humanos , Animales , Biomasa , Ríos/química , Biodiversidad
15.
Environ Pollut ; 321: 121184, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736567

RESUMEN

Pollution and climate change are among the main threats to the biodiversity of freshwater ecosystems in the 21st century. We experimentally tested the effects of microplastic and climate change (i.e., increase in temperature and CO2) on the survival and consumption by an Amazonian-stream shredder invertebrate. We tested three hypotheses. (1) Increased microplastic concentrations and climate change reduce shredder survival. We assumed that the combined stressors would increase toxic stress. (2) Increased concentrations of microplastics have negative effects on shredder food consumption. We assumed that blockage of the digestive tract by microplastics would lead to reduced ability to digest food. In addition, increased temperature and CO2 would lead to an increase in metabolic cost and reduced consumption. (3) The interaction between microplastics and climate change have greater negative effects on survival and consumption than either alone. We combined different concentrations of microplastic and climate change scenarios to simulate in real-time increases in temperature and CO2 forecast for 2100 for Amazonia. We found that both stressors had lethal effects, increasing mortality risk, but there was no interaction effect. Shredder consumption was negatively affected only by climate change. The interaction of microplastics and climate change on shredder consumption was dose-dependent and more intense in the extreme climate scenario, leading to reduced consumption. Our results indicate that microplastic and climate change may have strong effects on the consumption and/or survival of insect shredders in Amazonian streams. In addition, microplastic and climate change effects may affect not only populations but also ecosystem functioning (e.g., nutrient cycling). Integrative approaches to better understand and mitigate the effects of both stressors are necessary because plastic pollution and climate change co-occur in environments.


Asunto(s)
Ecosistema , Microplásticos , Animales , Plásticos/toxicidad , Ríos , Cambio Climático , Dióxido de Carbono , Invertebrados
16.
Rev. bras. entomol ; 67(spe): e20230063, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1529837

RESUMEN

ABSTRACT The male and female imago stage and a new species of the Hermanella complex are described based on material from Pará State, Northern Brazil: Hydromastodon cf. mikei (Thomas & Boutonnet, 2004) and Paramaka froehlichi sp. nov. The male imago of Hydromastodon cf. mikei can be distinguished from Hydromastodon sallesi by the following combination of characters: (1) body color pattern, especially abdominal terga translucent white with terga I to IV washed with black on posterior margin; (2) compound eyes anteriorly rounded; (3) medial projection of the styliger plate short; and (4) penis lobes close to each other and with posterolateral projection as long as ½ of its length. The male imago of Paramaka froehlichi sp.nov. can be distinguished the from the other species of the genus by the following combination of characters: (1) fore and hind wings with membrane brown; (2) legs uniformly yellowish-white, without distal band; (3) abdominal terga II to VI with marks more expanded laterally, median line absent; (4) medial projection of the styliger plate broad; (5) base of telopenis arising at distal ⅔ of penis lobe; and (6): body size of 6.1 to 7.6 mm.

17.
An Acad Bras Cienc ; 94(4): e20210763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36449902

RESUMEN

The influence of food types, reproductive behaviour, and the existence of a possible stratification to the attractiveness of Calliphoridae and Mesembrinellidae flies may contribute to the definition of collection methodologies. Thus, we assessed the effectiveness of traps with two bait types exposed at two different heights in the forests for collecting the aforementioned families. Traps were exposed in the Amazon rainforest floodplain area, where 40 traps were installed in 20 trees, in three periods of the year. On each tree, one trap was installed at 0.6 m and the other at 10 m above the ground, with either bovine lung or fermented banana. A total of 1,173 individuals were collected, including 10 species of Calliphoridae (962 individuals) and four species of Mesembrinellidae (211 individuals). Of the total in each family, Calliphoridae was most abundant in 0.6m lung bait traps (41%) and Mesembrinellidae in the 0.6 m banana bait traps (29%). Calliphoridae showed greater species richness, abundance, and differentiation in composition in low traps with lung as bait. In conclusion, only dipteran species from Calliphoridae have been affected and responded the collection methodologies employed of we, which may highlight remarkable differences in collection and subsequent data interpretation of inventories and monitoring using these insects.


Asunto(s)
Dípteros , Animales , Bovinos , Calliphoridae , Insectos , Bosques , Árboles
18.
Environ Monit Assess ; 194(10): 697, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986788

RESUMEN

We conducted a systematic review to better understand this gap and analyzed i) in which global regions are studies usually conducted, ii) the taxon studied, iii) sampling methods and iv) how authors collaborated in these studies. We also tested the relationship between different types of land use and land cover and adult EPT communities using a meta-analysis. We searched for relevant articles on the website Web of Science, using specific words related to the subject. We found 454 papers and selected 31 of them for the scientometric analysis, as they were in accordance with our objectives, and eight for the meta-analysis. Among this subset, we observed that study areas and collaborations among authors were largely restricted to a few countries in Europe and North America. Most studies used the group Trichoptera, probably due to its diversity and the longevity of the adults compared to other groups. Light traps were the most common sampling method, most likely due to their efficiency in capturing flying insects with nocturnal habits. The greatest differences in adult EPT communities were found between open areas (moorland and prairie) and forest areas. This result indicated that the conversion of forest habitats into open areas negatively impacts adult EPT communities. Our systematic review can be an important tool to help researchers choose appropriate collection methods and taxonomic groups to work with in studies on impacts of land use change on adult EPT communities.


Asunto(s)
Ephemeroptera , Animales , Ecosistema , Monitoreo del Ambiente , Insectos , Ríos
19.
Environ Monit Assess ; 194(9): 614, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35895142

RESUMEN

Aquatic ecosystems are affected by different land uses that modify gradients of environmental conditions. These impacts act directly on the community structure, especially the most sensitive ones, such as aquatic insects. Thus, dragonflies have been used as good models to assess these changes, since their suborders Anisoptera and Zygoptera have different ecophysiological and behavioral requirements. This study aimed to evaluate the following hypotheses: (1) dragonfly species composition differs along the environmental gradients of streams; therefore, we expect a higher proportion of species of the suborder Anisoptera in environments with a higher degree of disturbance, since these environmental conditions select heliothermic species with exophytic oviposition; (2) the reduction of habitat integrity and canopy cover will lead to a lower richness of the Zygoptera suborder, due to the restrictions of its thermoregulation and oviposition behavior in relation to Anisoptera, since the higher light input would favor heliothermic and exophytic species; (3) alterations in habitat integrity create ecological thresholds and points of change in the abundance and frequency of Odonata species, generating gradients in the environmental integrity conditions. Specimens were collected from 24 streams (first to third order), in a gradient of land uses. Canopy cover and stream width were predictors of taxonomic richness and abundance of the suborders Anisoptera and Zygoptera, with greater coverage and smaller width, positively affecting Zygoptera and negatively Anisoptera. The turning points were determined by a habitat integrity index, where below 0.38 there is an increase in generalist taxa and a decline in sensitive taxa. On the other hand, above 0.79, there was a sensitive taxa increase in detriment of generalists. Four individual taxa indicators were selected, two of which associated with a negative response (Perithemis tenera and Acanthagrion aepiolum) and two with positive responses (Epipleoneura metallica and Zenithoptera lanei) for habitat integrity. Our results are important to guide management strategies, recovery, and protection policies for areas of permanent protection, aiming to conserving biodiversity and natural resources essential to life quality maintenance.


Asunto(s)
Odonata , Animales , Biodiversidad , Dipterocarpaceae , Ecosistema , Monitoreo del Ambiente , Odonata/fisiología , Ríos
20.
Neotrop Entomol ; 51(3): 404-412, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35575876

RESUMEN

Among the oldest winged insects, odonates are a monophyletic order that have become important models for ecological studies because of their highly diverse reproductive behaviors and their role as top predators and bioindicators. However, knowledge on evolutionary relationships within the order is still scarce compared to other taxa, and this situation is even more complicated in areas with high biodiversity, such as in the Amazon. Here, we sought to identify knowledge gaps on Amazonian Odonata regarding three main aspects: (i) how the inclusion of Amazonian taxa affects our interpretation of the evolutionary relationships of Zygoptera and Anisoptera; (ii) the position of Amazonian taxa in the existing supertree of the Odonata; (iii) dating evolutionary divergence between nodes using fossil records; (iv) assessing whether more species-rich basins (e.g., Amazon basin) have a larger phylogenetic gap when compared to basins with lower richness in South and Central America; and (v) in the light of our knowledge, we discuss diversification patterns found in the most predominant clades of Amazonian taxa. We built a supertree from currently available phylogenetic information of Odonata. The results show that there is no genetic information for 85% (n: 503) of the Amazonian species and that family level relationships are unknown for 17 genera. After compiling the data, we observed that clades belonging to Neotropical lineages are the most poorly resolved, with large polytomies. This problem was identified in many Anisoptera genera, such as Macrothemis, Dasythemis, Elasmothemis, and Erythrodiplax. Our results also suggest that not always the richest basins have the greatest phylogenetic gaps. As expected, we found important gaps in the existing Odonata phylogenies, especially in clades that include Amazonian representatives, that are also those less known from ecological and conservation perspectives.


Asunto(s)
Odonata , Animales , Biodiversidad , Evolución Biológica , América Central , Odonata/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...