Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 106: 367-381, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32653086

RESUMEN

The detection of faulty machinery and its automated diagnosis is an industrial priority because efficient fault diagnosis implies efficient management of the maintenance times, reduction of energy consumption, reduction in overall costs and, most importantly, the availability of the machinery is ensured. Thus, this paper presents a new intelligent multi-fault diagnosis method based on multiple sensor information for assessing the occurrence of single, combined, and simultaneous faulty conditions in an induction motor. The contribution and novelty of the proposed method include the consideration of different physical magnitudes such as vibrations, stator currents, voltages, and rotational speed as a meaningful source of information of the machine condition. Moreover, for each available physical magnitude, the reduction of the original number of attributes through the Principal Component Analysis leads to retain a reduced number of significant features that allows achieving the final diagnosis outcome by a multi-label classification tree. The effectiveness of the method was validated by using a complete set of experimental data acquired from a laboratory electromechanical system, where a healthy and seven faulty scenarios were assessed. Also, the interpretation of the results do not require any prior expert knowledge and the robustness of this proposal allows its application in industrial applications, since it may deal with different operating conditions such as different loads and operating frequencies. Finally, the performance was evaluated using multi-label measures, which to the best of our knowledge, is an innovative development in the field condition monitoring and fault identification.

2.
J Adv Res ; 18: 173-184, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31032118

RESUMEN

Highly tensile manganese steel is in great demand owing to its high tensile strength under shock loads. All workpieces are produced through casting, because it is highly difficult to machine. The probabilistic aspects of its casting, its variable composition, and the different casting techniques must all be considered for the optimisation of its mechanical properties. A hybrid strategy is therefore proposed which combines decision trees and artificial neural networks (ANNs) for accurate and reliable prediction models for ore crushing plate lifetimes. The strategic blend of these two high-accuracy prediction models is used to generate simple decision trees which can reveal the main dataset features, thereby facilitating decision-making. Following a complexity analysis of a dataset with 450 different plates, the best model consisted of 9 different multilayer perceptrons, the inputs of which were only the Fe and Mn plate compositions. The model recorded a low root mean square error (RMSE) of only 0.0614 h for the lifetime of the plate: a very accurate result considering their varied lifetimes of between 746 and 6902 h in the dataset. Finally, the use of these models under real industrial conditions is presented in a heat map, namely a 2D representation of the main manufacturing process inputs with a colour scale which shows the predicted output, i.e. the expected lifetime of the manufactured plates. Thus, the hybrid strategy extracts core training dataset information in high-accuracy prediction models. This novel strategy merges the different capabilities of two families of machine-learning algorithms. It provides a high-accuracy industrial tool for the prediction of the full lifetime of highly tensile manganese steel plates. The results yielded a precision prediction of (RMSE of 0.061 h) for the full lifetime of (light, medium, and heavy) crusher plates manufactured with the three (experimental, classic, and highly efficient (new)) casting methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA