Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Biol ; 17(5): e3000260, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083648

RESUMEN

Members of the solute carrier 17 (SLC17) family use divergent mechanisms to concentrate organic anions. Membrane potential drives uptake of the principal excitatory neurotransmitter glutamate into synaptic vesicles, whereas closely related proteins use proton cotransport to drive efflux from the lysosome. To delineate the divergent features of ionic coupling by the SLC17 family, we determined the structure of Escherichia coli D-galactonate/H+ symporter D-galactonate transporter (DgoT) in 2 states: one open to the cytoplasmic side and the other open to the periplasmic side with substrate bound. The structures suggest a mechanism that couples H+ flux to substrate recognition. A transition in the role of H+ from flux coupling to allostery may confer regulation by trafficking to and from the plasma membrane.


Asunto(s)
Metabolismo Energético , Escherichia coli/metabolismo , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Protones , Azúcares Ácidos/metabolismo
2.
Nat Commun ; 9(1): 4005, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275448

RESUMEN

Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.


Asunto(s)
Antiportadores/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Sustitución de Aminoácidos , Antiportadores/genética , Antiportadores/metabolismo , Membrana Celular/metabolismo , Cloranfenicol/metabolismo , Cristalografía por Rayos X , Resistencia a Múltiples Medicamentos/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Transporte de Proteínas , Relación Estructura-Actividad
3.
Biochim Biophys Acta Biomembr ; 1860(11): 2456-2464, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30028956

RESUMEN

Human MATE1 (multidrug and toxin extrusion 1, hMATE1) is a H+/organic cation (OC) exchanger responsible for the final step of toxic organic cation excretion in the kidney and liver. To investigate the mechanism of transport, we have established an in vitro assay procedure that includes its expression in insect cells, solubilization with octyl glucoside, purification, and reconstitution into liposomes. The resultant proteoliposomes containing hMATE1 as the sole protein component took up radiolabeled tetraethylammonium (TEA) in a ∆pH-dependent and electroneutral fashion. Furthermore, lipid-detergent micelle containing hMATE1 showed ∆pH-dependent TEA binding similar to transport. Mutated hMATE1 with replacement E273Q completely lacked these TEA binding and transport. In the case of divalent substrates, transport was electrogenic. These observations indicate that the stoichiometry of OC/H+ exchange is independent of substrate charge. Purification and reconstitution of hMATE1 is considered to be suitable for understanding the detailed molecular mechanisms of hMATE1. The results suggest that Glu273 of hMATE1 plays essential roles in substrate binding and transport.


Asunto(s)
Proteínas de Transporte de Catión Orgánico/metabolismo , Tetraetilamonio/metabolismo , Cationes/química , Cationes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/genética , Unión Proteica , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Tetraetilamonio/química
4.
J Proteome Res ; 17(3): 1108-1119, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29350038

RESUMEN

Structural analysis of purified active membrane proteins can be performed by mass spectrometry (MS). However, no large-scale expression systems for active eukaryotic membrane proteins are available. Moreover, because membrane proteins cannot easily be digested by trypsin and ionized, they are difficult to analyze by MS. We developed a method for mass spectral analysis of eukaryotic membrane proteins combined with an overexpression system in Escherichia coli. Vesicular glutamate transporter 2 (VGLUT2/SLC17A6) with a soluble α-helical protein and histidine tag on the N- and C-terminus, respectively, was overexpressed in E. coli, solubilized with detergent, and purified by Ni-NTA affinity chromatography. Proteoliposomes containing VGLUT2 retained glutamate transport activity. For MS analysis, the detergent was removed from purified VGLUT2 by trichloroacetic acid precipitation, and VGLUT2 was then subjected to reductive alkylation and tryptic digestion. The resulting peptides were detected with 88% coverage by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS with or without liquid chromatography. Vesicular excitatory amino acid transporter and vesicular acetylcholine transporter were also detected with similar coverage by the same method. Thus this methodology could be used to analyze purified eukaryotic active transporters. Structural analysis with chemical modifiers by MS could have applications in functional binding analysis for drug discovery.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/análisis , Fragmentos de Péptidos/análisis , Proteínas de Transporte Vesicular de Acetilcolina/análisis , Proteína 2 de Transporte Vesicular de Glutamato/análisis , Animales , Precipitación Química , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Ratones , Mapeo Peptídico , Proteolisis , Ratas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácido Tricloroacético/química , Tripsina/química , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
Epilepsia ; 58(5): 845-857, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28294308

RESUMEN

OBJECTIVE: The ketogenic diet is clinically used to treat drug-resistant epilepsy. The diet treatment markedly increases ketone bodies (acetoacetate and ß-hydroxybutyrate), which work as energy metabolites in the brain. Here, we investigated effects of acetoacetate on voltage-dependent Ca2+ channels (VDCCs) in pyramidal cells of the hippocampus. We further explored an acetoacetate analog that inhibited VDCCs in pyramidal cells, reduced excitatory postsynaptic currents (EPSCs), and suppressed seizures in vivo. METHODS: The effects of acetoacetate and its analogs on VDCCs and EPSCs were evaluated using patch-clamp recordings from CA1 pyramidal cells of mouse hippocampal slices. The in vivo effects of these reagents were also evaluated using a chronic seizure model induced by intrahippocampal injection of kainate. RESULTS: Acetoacetate inhibited VDCCs in pyramidal cells of hippocampal slices, and reduced EPSCs in slices exhibiting epileptiform activity. More potent EPSC inhibitors were then explored by modifying the chemical structure of acetoacetate, and 2-phenylbutyrate was identified as an acetoacetate analog that inhibited VDCCs and EPSCs more potently. Although acetoacetate is known to inhibit vesicular glutamate transporters (VGLUTs), 2-phenylbutyrate did not inhibit VGLUTs, showing that 2-phenylbutyrate is an acetoacetate analog that preferably inhibits VDCCs. In addition, 2-phenylbutyrate markedly reduced EPSCs in slices exhibiting epileptiform activity, and suppressed hippocampal seizures in vivo in a mouse model of epilepsy. The in vivo antiseizure effects of 2-phenylbutyrate were more potent than those of acetoacetate. Finally, intraperitoneal 2-phenylbutyrate was delivered to the brain, and its brain concentration reached the level enough to reduce EPSCs. SIGNIFICANCE: These results demonstrate that 2-phenylbutyrate is an acetoacetate analog that inhibits VDCCs and EPSCs in pyramidal cells, suppresses hippocampal seizures in vivo, and has brain penetration ability. Thus 2-phenylbutyrate provides a useful chemical structure as a lead compound to develop new antiseizure drugs originating from ketone bodies.


Asunto(s)
Acetoacetatos/farmacología , Dieta Cetogénica , Hipocampo/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Fenilbutiratos/farmacología , Células Piramidales/efectos de los fármacos , Animales , Canales de Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía/efectos de los fármacos , Femenino , Técnicas In Vitro , Inyecciones , Ácido Kaínico , Masculino , Ratones , Ratones Endogámicos ICR , Técnicas de Cultivo de Órganos
6.
Annu Rev Pharmacol Toxicol ; 56: 385-402, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26514205

RESUMEN

Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.


Asunto(s)
Transporte Biológico/fisiología , Interacciones Farmacológicas/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Animales , Humanos
7.
Am J Physiol Cell Physiol ; 309(2): C71-80, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25972451

RESUMEN

Membrane potential (Δψ)-driven and Cl(-)-dependent organic anion transport is a primary function of the solute carrier family 17 (SLC17) transporter family. Although the transport substrates and physiological relevance of the major members are well understood, SLC17A2 protein known to be Na(+)-phosphate cotransporter 3 (NPT3) is far less well characterized. In the present study, we investigated the transport properties and expression patterns of mouse SLC17A2 protein (mNPT3). Proteoliposomes containing the purified mNPT3 protein took up radiolabeled p-aminohippuric acid (PAH) in a Δψ- and Cl(-)-dependent manner. The mNPT3-mediated PAH uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDs) and Evans blue, common inhibitors of SLC17 family members. The PAH uptake was also inhibited by various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs (NSAIDs) and urate. Consistent with these observations, the proteoliposome took up radiolabeled urate in a Δψ- and Cl(-)-dependent manner. Immunohistochemistry with specific antibodies against mNPT3 combined with RT-PCR revealed that mNPT3 is present in various tissues, including the hepatic bile duct, luminal membranes of the renal urinary tubules, maternal side of syncytiotrophoblast in the placenta, apical membrane of follicle cells in the thyroid, bronchiole epithelial cells in the lungs, and astrocytes around blood vessels in the cerebrum. These results suggested that mNPT3 is a polyspecific organic anion transporter that is involved in circulation of urate throughout the body.


Asunto(s)
Membrana Celular/metabolismo , Cloruros/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Ácido Úrico/metabolismo , Animales , Transporte Biológico , Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica , Hipuratos/metabolismo , Cinética , Potenciales de la Membrana , Ratones Endogámicos C57BL , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/antagonistas & inhibidores , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/genética
8.
Proc Natl Acad Sci U S A ; 112(11): 3356-61, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733858

RESUMEN

Extrusion of chloroquine (CQ) from digestive vacuoles through the Plasmodium falciparum CQ resistance transporter (PfCRT) is essential to establish CQ resistance of the malaria parasite. However, the physiological relevance of PfCRT and how CQ-resistant PfCRT gains the ability to transport CQ remain unknown. We prepared proteoliposomes containing purified CQ-sensitive and CQ-resistant PfCRTs and measured their transport activities. All PfCRTs tested actively took up tetraethylammonium, verapamil, CQ, basic amino acids, polypeptides, and polyamines at the expense of an electrochemical proton gradient. CQ-resistant PfCRT exhibited decreased affinity for CQ, resulting in increased CQ uptake. Furthermore, CQ competitively inhibited amino acid transport. Thus, PfCRT is a H(+)-coupled polyspecific nutrient and drug exporter.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Protones , Proteínas Protozoarias/metabolismo , Aminoácidos/metabolismo , Transporte Biológico/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Tetraetilamonio/metabolismo , Verapamilo/farmacología
9.
J Neurochem ; 127(4): 482-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23919636

RESUMEN

Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes ß-alanine as a substrate. Proteoliposomes containing purified VGAT transport ß-alanine using Δψ but not ΔpH as a driving force. The Δψ-driven ß-alanine uptake requires Cl(-). VGAT also facilitates Cl(-) uptake in the presence of ß-alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates ß-alanine uptake. These findings indicated that VGAT transports ß-alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular ß-alanine transporter. Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In the present study, we showed that proteoliposomes containing purified VGAT transport ß-alanine using Δψ as a driving force. VGAT also facilitates Cl(-) uptake. Our findings indicated that VGAT functions as a vesicular ß-alanine transporter.


Asunto(s)
Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/química , beta-Alanina/química , Transporte Biológico , Liposomas/química , Mutación , Proteolípidos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
10.
Structure ; 20(4): 582-92, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22483106

RESUMEN

In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM.


Asunto(s)
Proteínas de Escherichia coli/química , Fragmentos Fab de Inmunoglobulinas/química , Proproteína Convertasas/química , Serina Endopeptidasas/química , Proteínas de Transporte Vesicular de Glutamato/química , Microscopía por Crioelectrón/métodos , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Modelos Moleculares , Peso Molecular , Biblioteca de Péptidos , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo
11.
Biochemistry ; 50(25): 5558-65, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21612282

RESUMEN

Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.


Asunto(s)
Metabolismo Energético , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Proteínas Transportadoras Vesiculares de Neurotransmisores/química , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas , Transducción de Señal , Proteínas de Transporte Vesicular de Glutamato/química , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/fisiología
12.
Neuron ; 68(1): 99-112, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20920794

RESUMEN

Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , 4-Aminopiridina/farmacología , Acetoacetatos/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Conducta Animal , Células Cultivadas , Cloruros/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Exocitosis/efectos de los fármacos , Exocitosis/genética , Regulación de la Expresión Génica , Hipocampo/citología , Humanos , Técnicas In Vitro , Cuerpos Cetónicos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Endogámicos C57BL , Microdiálisis/métodos , Modelos Biológicos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Vesículas Sinápticas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/química , Proteína 2 de Transporte Vesicular de Glutamato/genética
13.
J Biol Chem ; 284(50): 35073-8, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19843525

RESUMEN

The vesicular inhibitory amino acid transporter (VIAAT) is a synaptic vesicle protein responsible for the vesicular storage of gamma-aminobutyrate (GABA) and glycine which plays an essential role in GABAergic and glycinergic neurotransmission. The transport mechanism of VIAAT remains largely unknown. Here, we show that proteoliposomes containing purified VIAAT actively took up GABA upon formation of membrane potential (Deltapsi) (positive inside) but not DeltapH. VIAAT-mediated GABA uptake had an absolute requirement for Cl(-) and actually accompanied Cl(-) movement. Kinetic analysis indicated that one GABA molecule and two Cl(-) equivalents were transported during one transport cycle. VIAAT in which Glu(213) was specifically mutated to alanine completely lost the ability to take up both GABA and Cl(-). Essentially the same results were obtained with glycine, another substrate of VIAAT. These results demonstrated that VIAAT is a vesicular Cl(-) transporter that co-transports Cl(-) with GABA or glycine in a Deltapsi dependent manner. It is concluded that Cl(-) plays an essential role in vesicular storage of GABA and glycine.


Asunto(s)
Cloruros/metabolismo , Simportadores/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Glicina/metabolismo , Ionóforos/metabolismo , Liposomas/metabolismo , Potenciales de la Membrana/fisiología , Ratas , Simportadores/genética , Valinomicina/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
14.
Proc Natl Acad Sci U S A ; 105(15): 5683-6, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18375752

RESUMEN

ATP is a major chemical transmitter in purinergic signal transmission. Before secretion, ATP is stored in secretory vesicles found in purinergic cells. Although the presence of active transport mechanisms for ATP has been postulated for a long time, the proteins responsible for its vesicular accumulation remains unknown. The transporter encoded by the human and mouse SLC17A9 gene, a novel member of an anion transporter family, was predominantly expressed in the brain and adrenal gland. The mouse and bovine counterparts were associated with adrenal chromaffin granules. Proteoliposomes containing purified transporter actively took up ATP, ADP, and GTP by using membrane potential as the driving force. The uptake properties of the reconstituted transporter were similar to that of the ATP uptake by synaptic vesicles and chromaffin granules. Suppression of endogenous SLC17A9 expression in PC12 cells decreased exocytosis of ATP. These findings strongly suggest that SLC17A9 protein is a vesicular nucleotide transporter and should lead to the elucidation of the molecular mechanism of ATP secretion in purinergic signal transmission.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Nucleótidos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Difosfato , Animales , Exocitosis , Guanosina Trifosfato , Humanos , Ratones , Proteínas de Transporte de Nucleótidos/aislamiento & purificación , Células PC12 , Ratas , Transfección , Proteínas de Transporte Vesicular/aislamiento & purificación
16.
J Biol Chem ; 281(51): 39499-506, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17046815

RESUMEN

Vesicular glutamate transporters (VGLUTs) are responsible for the vesicular storage of l-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. The molecular mechanism of the transport remains unknown. Here, we established a novel in vitro assay procedure, which includes purification of wild and mutant VGLUT2 and their reconstitution with purified bacterial F(o)F(1)-ATPase (F-ATPase) into liposomes. Upon the addition of ATP, the proteoliposomes facilitated l-glutamate uptake in a membrane potential (DeltaPsi)-dependent fashion. The ATP-dependent l-glutamate uptake exhibited an absolute requirement for approximately 4 mm Cl(-), was sensitive to Evans blue, but was insensitive to d,l-aspartate. VGLUT2s with mutations in the transmembrane-located residues Arg(184), His(128), and Glu(191) showed a dramatic loss in l-glutamate transport activity, whereas Na(+)-dependent inorganic phosphate (P(i)) uptake remained comparable to that of the wild type. Furthermore, P(i) transport did not require Cl(-) and was not inhibited by Evans blue. Thus, VGLUT2 appears to possess two intrinsic transport machineries that are independent of each other: a DeltaPsi-dependent l-glutamate uptake and a Na(+)-dependent P(i) uptake.


Asunto(s)
Cloruros/química , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Animales , Arginina/química , Transporte Biológico , Ácido Glutámico/química , Histidina/química , Insectos , Potenciales de la Membrana , Datos de Secuencia Molecular , Mutación , Fosfatos/química , Sodio/química , Proteína 2 de Transporte Vesicular de Glutamato/química
17.
EMBO J ; 25(18): 4175-86, 2006 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16957773

RESUMEN

Osteoclasts are involved in the catabolism of the bone matrix and eliminate the resulting degradation products through transcytosis, but the molecular mechanism and regulation of transcytosis remain poorly understood. Upon differentiation, osteoclasts express vesicular glutamate transporter 1 (VGLUT1), which is essential for vesicular storage and subsequent exocytosis of glutamate in neurons. VGLUT1 is localized in transcytotic vesicles and accumulates L-glutamate. Osteoclasts secrete L-glutamate and the bone degradation products upon stimulation with KCl or ATP in a Ca2+-dependent manner. KCl- and ATP-dependent secretion of L-glutamate was absent in osteoclasts prepared from VGLUT1-/- knockout mice. Osteoclasts express mGluR8, a class III metabotropic glutamate receptor. Its stimulation by a specific agonist inhibits secretion of L-glutamate and bone degradation products, whereas its suppression by a specific antagonist stimulates bone resorption. Finally, it was found that VGLUT1-/- mice develop osteoporosis. Thus, in bone-resorbing osteoclasts, L-glutamate and bone degradation products are secreted through transcytosis and the released L-glutamate is involved in autoregulation of transcytosis. Glutamate signaling may play an important role in the bone homeostasis.


Asunto(s)
Exocitosis/fisiología , Ácido Glutámico/metabolismo , Osteoclastos/metabolismo , Células 3T3 , Animales , Resorción Ósea/metabolismo , Línea Celular , Células Cultivadas , Homeostasis , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Modelos Biológicos , Osteoclastos/ultraestructura , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/genética
18.
J Neurochem ; 96(2): 550-60, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16336630

RESUMEN

Vesicular glutamate transporter (VGLUT) is responsible for the vesicular storage of l-glutamate, and plays an essential role in glutamate-mediated intercellular signal transmission in the CNS and in some neuroendocrine cells. Intestinal L cells are the glucose-responsive neuroendocrine cells responsible for the secretion of glucagon-like peptide 1 (GLP-1). We have shown that intestinal L cells express VGLUT2, a VGLUT isoform, which suggests that L cells secrete L-glutamate. In the present study, we investigated this possibility using GLUTag mouse clonal L cells. RT-PCR and northern blot analyses revealed expression of the VGLUT1 and VGLUT2 genes, but not of the VGLUT3 gene. Western blot analysis revealed immunological counterparts for VGLUT2, whereas an immunological counterpart of VGLUT1 was not detected. Indirect immunofluorescence microscopy revealed a punctate distribution of VGLUT2 immunoreactivity throughout the cells, which co-localized with GLP-1. Double-labeling immunoelectronmicroscopy confirmed the association of VGLUT2 with GLP-1-containing secretory granules. The membrane fraction exhibited ATP-dependent L-glutamate uptake, which was sensitive to bafilomycin A1 (a vacuolar proton ATPase inhibitor) and Evans blue (a VGLUT inhibitor) but insensitive to D,L-aspartate. Upon depolarization with KCl, GLUTag cells secreted appreciable amounts of L-glutamate and GLP-1. D-Glucose and methyl-alpha-D-glucopyranoside, stimulators of exocytosis of GLP-1, also triggered the secretion of L-glutamate. The L-glutamate secretion was partially dependent on Ca2+ and sensitive to bafilomycin A1. These results demonstrated that GLUTag cells stored L-glutamate in secretory granules and secreted it with GLP-1 by exocytosis. As GLUTag cells and intestinal L cells express kainate receptors and plasma membrane glutamate transporters, these results support the concept of L-glutamate-mediated intercellular signaling in the vicinity of intestinal L cells.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Ácido Glutámico/metabolismo , Intestino Delgado/metabolismo , Vesículas Secretoras/metabolismo , Animales , Células Clonales , Exocitosis , Ácido Glutámico/farmacocinética , Intestino Delgado/citología , Ratones , Transducción de Señal , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...