Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; : e2400171, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710636

RESUMEN

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).

3.
Biomolecules ; 12(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358911

RESUMEN

Multidrug-resistant tuberculosis (MDR-TB) poses a significant threat to mankind and as such earned its place on the WHO list of priority pathogens. New antimycobacterials with a mechanism of action different to currently used agents are highly required. This study presents the design, synthesis, and biological evaluation of 3-acylaminopyrazine-2-carboxamides derived from a previously reported inhibitor of human prolyl-tRNA synthetase. Compounds were evaluated in vitro against various strains of mycobacteria, pathogenic bacteria, and fungi of clinical significance. In general, high activity against mycobacteria was noted, while the antibacterial and antifungal activity was minimal. The most active compounds were 4'-substituted 3-(benzamido)pyrazine-2-carboxamides, exerting MIC (Minimum Inhibitory Concentration) from 1.95 to 31.25 µg/mL. Detailed structure-activity relationships were established and rationalized in silico with regard to mycobacterial ProRS as a probable target. The active compounds preserved their activity even against multidrug-resistant strains of Mycobacterium tuberculosis. At the same time, they were non-cytotoxic against HepG2 human hepatocellular carcinoma cells. This project is the first step in the successful repurposing of inhibitors of human ProRS to inhibitors of mycobacterial ProRS with antimycobacterial activity.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacología , Adenosina/farmacología , Pruebas de Sensibilidad Microbiana
4.
Pharmaceuticals (Basel) ; 15(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35631406

RESUMEN

Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k'w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial ß-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.

5.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214522

RESUMEN

Digital twin (DT) is an emerging key technology that enables sophisticated interaction between physical objects and their virtual replicas, with applications in almost all engineering fields. Although it has recently gained significant attraction in both industry and academia, so far it has no unanimously adopted and established definition. One may therefore come across many definitions of what DT is and how to create it. DT can be designed for an existing process and help us to improve it. Another possible approach is to create the DT for a brand new device. In this case, it can reveal how the system would behave in given conditions or when controlled. One of purposes of a DT is to support the commissioning of devices. So far, recognized and used techniques to make the commissioning more effective are virtual commissioning and hybrid commissioning. In this article, we present a concept of hybrid virtual commissioning. This concept aims to point out the possibility to use real devices already at the stage of virtual commissioning. It is introduced in a practical case study of a robotic manipulator with machine vision controlled with a programmable logic controller in a pick-and-place application. This study presents the benefits that stem from the proposed approach and also details when it is convenient to use it.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Industrias , Tecnología
6.
Glycobiology ; 32(5): 391-403, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34972864

RESUMEN

The heat-labile enterotoxins of Escherichia coli and cholera toxin of Vibrio cholerae are related in structure and function. Each of these oligomeric toxins is comprised of one A polypeptide and five B polypeptides. The B-subunits bind to gangliosides, which are followed by uptake into the intoxicated cell and activation of the host's adenylate cyclase by the A-subunits. There are two antigenically distinct groups of these toxins. Group I includes cholera toxin and type I heat-labile enterotoxin of E. coli; group II contains the type II heat-labile enterotoxins of E. coli. Three variants of type II toxins, designated LT-IIa, LT-IIb and LT-IIc have been described. Earlier studies revealed the crystalline structure of LT-IIb. Herein the carbohydrate binding specificity of LT-IIc B-subunits was investigated by glycosphingolipid binding studies on thin-layer chromatograms and in microtiter wells. Binding studies using a large variety of glycosphingolipids showed that LT-IIc binds with high affinity to gangliosides with a terminal Neu5Acα3Gal or Neu5Gcα3Gal, e.g. the gangliosides GM3, GD1a and Neu5Acα3-/Neu5Gcα3--neolactotetraosylceramide and Neu5Acα3-/Neu5Gcα3-neolactohexaosylceramide. The crystal structure of LT-IIc B-subunits alone and with bound LSTd/sialyl-lacto-N-neotetraose d pentasaccharide uncovered the molecular basis of the ganglioside recognition. These studies revealed common and unique functional structures of the type II family of heat-labile enterotoxins.


Asunto(s)
Toxinas Bacterianas , Proteínas de Escherichia coli , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxina del Cólera/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliósido G(M1)/metabolismo , Gangliósidos/metabolismo , Calor
7.
Bioorg Chem ; 118: 105489, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826708

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the number one cause of deaths due to a single infectious agent worldwide. The treatment of TB is lengthy and often complicated by the increasing drug resistance. New compounds with new mechanisms of action are therefore needed. We present the design, synthesis, and biological evaluation of pyrazine-based inhibitors of a prominent antimycobacterial drug target - mycobacterial methionine aminopeptidase 1 (MtMetAP1). The inhibitory activities of the presented compounds were evaluated against the MtMetAP1a isoform, and all derivatives were tested against a broad spectrum of myco(bacteria) and fungi. The cytotoxicity of the compounds was also investigated using Hep G2 cell lines. Overall, high inhibition of the isolated enzyme was observed for 3-substituted N-(thiazol-2-yl)pyrazine-2-carboxamides, particularly when the substituent was represented by 2-substituted benzamide. The extent of inhibition was strongly dependent on the used metal cofactor. The highest inhibition was seen in the presence of Ni2+. Several compounds also showed mediocre in vitro potency against Mtb (both Mtb H37Ra and H37Rv). Despite the structural similarities of bacterial and fungal MetAP1 to mycobacterial MtMetAP1, title compounds did not exert antibacterial nor antifungal activity. The reasons behind the higher activity of 2-substituted benzamido derivatives, as well as the correlation of enzyme inhibition with the in vitro growth inhibition activity is discussed.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Aminopeptidasas/metabolismo , Antituberculosos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Pirazinas/síntesis química , Pirazinas/química , Relación Estructura-Actividad
8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360555

RESUMEN

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Bioensayo/métodos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazinamida/química , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
9.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230728

RESUMEN

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Aminoácidos/química , Aspergillus flavus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Rotación Óptica , Pseudomonas aeruginosa/efectos de los fármacos , Pirazinamida/química , Staphylococcus aureus/efectos de los fármacos
10.
J Med Chem ; 63(17): 8901-8916, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32275822

RESUMEN

Pyrazine-based compounds are of great importance in medicinal chemistry. Due to their heteroaromatic nature, they uniquely combine properties of heteroatoms (polar interactions) with the properties of aromatic moieties (nonpolar interactions). This review summarizes results of a systematic analysis of RCSB PDB database focused on important binding interactions of pyrazine-based ligands cocrystallized in protein targets. The most frequent interaction of pyrazine was hydrogen bond to pyrazine nitrogen atom as an acceptor, followed by weak hydrogen bond with pyrazine hydrogen as donor. We also identified intramolecular hydrogen bonds within pyrazine ligands, π-interactions, coordination to metal ions, and few halogen bonds in chloropyrazines. In many cases the binding mode of the pyrazine fragment was complex, involving a combination of several interactions. We conclude that pyrazine as a molecular fragment should not be perceived as a simple aromatic isostere but rather as a readily interacting moiety of drug-like molecules with high potential for interactions to proteins.


Asunto(s)
Proteínas/química , Pirazinas/química , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Sitios de Unión , Bases de Datos de Proteínas , Humanos , Enlace de Hidrógeno , Ligandos , Metales/química , Simulación de Dinámica Molecular , Proteínas/metabolismo , Pirazinas/metabolismo
11.
Molecules ; 25(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905775

RESUMEN

We prepared a series of substituted N-(pyrazin-2-yl)benzenesulfonamides as an attempt to investigate the effect of different linkers connecting pyrazine to benzene cores on antimicrobial activity when compared to our previous compounds of amide or retro-amide linker type. Only two compounds, 4-amino-N-(pyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 25 µM) and 4-amino-N-(6-chloropyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 22 µM) exerted good antitubercular activity against M. tuberculosis H37Rv. However, they were excluded from the comparison as they-unlike the other compounds-possessed the pharmacophore for the inhibition of folate pathway, which was proven by docking studies. We performed target fishing, where we identified matrix metalloproteinase-8 as a promising target for our title compounds that is worth future exploration.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antiinfecciosos/química , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Fenómenos Químicos , Técnicas de Química Sintética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Bencenosulfonamidas
12.
Molecules ; 22(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065539

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 µg/mL, 5.19 µM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 µg/mL, 18.91 µM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proliferación Celular/efectos de los fármacos , Fagopyrum/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reguladores del Crecimiento de las Plantas/síntesis química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Pirazinamida/química , Pirazinamida/farmacología , Pirazinas/síntesis química , Pirazinas/química , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...