Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15740, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977862

RESUMEN

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Asunto(s)
ADN Helicasas , Replicación del ADN , G-Cuádruplex , Humanos , ADN Helicasas/metabolismo , Daño del ADN , Aberraciones Cromosómicas , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
2.
J Biotechnol ; 392: 161-179, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009231

RESUMEN

The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.

3.
Cells ; 12(18)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759442

RESUMEN

Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.


Asunto(s)
Reparación del ADN , Fosfoproteínas Fosfatasas , Humanos , Fosfoproteínas Fosfatasas/genética , Reparación del ADN por Recombinación , Daño del ADN
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431668

RESUMEN

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Recombinación Homóloga/genética , RecQ Helicasas/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , Resolvasas de Unión Holliday/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Radiación Ionizante , Transducción de Señal/genética
5.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355125

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the treatment of BRCA-deficient cancers, with treatments currently extending toward other homologous recombination defective tumors. In a genome-wide CRISPR knockout screen with olaparib, we identify ALC1 (Amplified in Liver Cancer 1)-a cancer-relevant poly(ADP-ribose)-regulated chromatin remodeling enzyme-as a key modulator of sensitivity to PARP inhibitor. We found that ALC1 can remove inactive PARP1 indirectly through binding to PARylated chromatin. Consequently, ALC1 deficiency enhances trapping of inhibited PARP1, which then impairs the binding of both nonhomologous end-joining and homologous recombination repair factors to DNA lesions. We also establish that ALC1 overexpression, a common feature in multiple tumor types, reduces the sensitivity of BRCA-deficient cells to PARP inhibitors. Together, we conclude that ALC1-dependent PARP1 mobilization is a key step underlying PARP inhibitor resistance.


Asunto(s)
Cromatina , ADN Helicasas , Proteínas de Unión al ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Línea Celular Tumoral , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
6.
Nucleic Acids Res ; 47(21): 11250-11267, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31566235

RESUMEN

The addition of poly(ADP-ribose) (PAR) chains along the chromatin fiber due to PARP1 activity regulates the recruitment of multiple factors to sites of DNA damage. In this manuscript, we investigated how, besides direct binding to PAR, early chromatin unfolding events controlled by PAR signaling contribute to recruitment to DNA lesions. We observed that different DNA-binding, but not histone-binding, domains accumulate at damaged chromatin in a PAR-dependent manner, and that this recruitment correlates with their affinity for DNA. Our findings indicate that this recruitment is promoted by early PAR-dependent chromatin remodeling rather than direct interaction with PAR. Moreover, recruitment is not the consequence of reduced molecular crowding at unfolded damaged chromatin but instead originates from facilitated binding to more exposed DNA. These findings are further substantiated by the observation that PAR-dependent chromatin remodeling at DNA lesions underlies increased DNAse hypersensitivity. Finally, the relevance of this new mode of PAR-dependent recruitment to DNA lesions is demonstrated by the observation that reducing the affinity for DNA of both CHD4 and HP1α, two proteins shown to be involved in the DNA-damage response, strongly impairs their recruitment to DNA lesions.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Cromatina/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Poli Adenosina Difosfato Ribosa/fisiología , Sitios de Unión/genética , Células Cultivadas , Cromatina/química , Homólogo de la Proteína Chromobox 5 , Humanos , Conformación de Ácido Nucleico , Poli Adenosina Difosfato Ribosa/metabolismo , Unión Proteica
7.
Mol Cell Oncol ; 5(5): e1511210, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263950

RESUMEN

Chromatin remodeling is critical for the regulation of the DNA damage response. We highlight findings from our recent study showing that the deposition of the histone variant H3.3 by the alpha-thalassemia mental retardation X-linked protein (ATRX) and the death domain associated protein (DAXX) chromatin remodeling complex regulates DNA repair synthesis during homologous recombination.

8.
Mol Cell ; 71(1): 11-24.e7, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29937341

RESUMEN

ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Intercambio de Cromátides Hermanas , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Co-Represoras , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética
9.
Mol Cell ; 65(4): 671-684.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28132842

RESUMEN

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.


Asunto(s)
Núcleo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Fase G1/efectos de la radiación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/patología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Endonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fase G2 , Eliminación de Gen , Células HeLa , Humanos , Cinética , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Transfección , Translocación Genética , Proteínas Supresoras de Tumor , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
10.
DNA Repair (Amst) ; 49: 33-42, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27838458

RESUMEN

Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , ADN/efectos de la radiación , Células HEK293 , Humanos , Rayos Ultravioleta
11.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792895

RESUMEN

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Reparación del ADN por Recombinación , Secuencias de Aminoácidos , ADN/biosíntesis , ADN Polimerasa III/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Células HEK293 , Humanos , Ubiquitina-Proteína Ligasas/fisiología , Rayos Ultravioleta
12.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26350214

RESUMEN

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Adenosina Trifosfatasas/metabolismo , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
DNA Repair (Amst) ; 12(9): 691-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23731732

RESUMEN

Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Recombinación Homóloga , Antígeno Nuclear de Célula en Proliferación/química , Daño del ADN , ADN Polimerasa III/química , ADN Polimerasa III/fisiología , Replicación del ADN , ADN de Cadena Simple/biosíntesis , ADN Polimerasa Dirigida por ADN/fisiología , Células HeLa , Humanos , Concentración Osmolar , Antígeno Nuclear de Célula en Proliferación/fisiología , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/fisiología , Recombinasa Rad51/química , ADN Polimerasa iota
14.
Nucleic Acids Res ; 40(21): 10795-808, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22987070

RESUMEN

Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork collapse, increased mutagenesis and genomic instability. Replication through DNA lesions depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA), which enable translesion synthesis (TLS) and template switching, respectively. A proper replication fork rescue is ensured by the dynamic ubiquitylation and deubiquitylation of PCNA; however, as yet, little is known about its regulation. Here, we show that human Spartan/C1orf124 protein provides a higher cellular level of ubiquitylated-PCNA by which it regulates the choice of DNA damage tolerance pathways. We find that Spartan is recruited to sites of replication stress, a process that depends on its PCNA- and ubiquitin-interacting domains and the RAD18 PCNA ubiquitin ligase. Preferential association of Spartan with ubiquitin-modified PCNA protects against PCNA deubiquitylation by ubiquitin-specific protease 1 and facilitates the access of a TLS polymerase to the replication fork. In concert, depletion of Spartan leads to increased sensitivity to DNA damaging agents and causes elevated levels of sister chromatid exchanges. We propose that Spartan promotes genomic stability by regulating the choice of rescue of stalled replication fork, whose mechanism includes its interaction with ubiquitin-conjugated PCNA and protection against PCNA deubiquitylation.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/metabolismo , Proteínas de Arabidopsis , Línea Celular , Replicación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Endopeptidasas/metabolismo , Humanos , Estructura Terciaria de Proteína , Intercambio de Cromátides Hermanas , Ubiquitina-Proteína Ligasas/fisiología , Proteasas Ubiquitina-Específicas
15.
Nucleic Acids Res ; 40(13): 6049-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22457066

RESUMEN

DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18(-/-) cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Antígeno Nuclear de Célula en Proliferación/metabolismo , Sumoilación , Replicación del ADN , Histonas/metabolismo , Recombinación Homóloga , Humanos , Mutación , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Proteína SUMO-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA