Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 4199394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035211

RESUMEN

Ocular ischemia/hypoxia is a severe problem in ophthalmology that can cause vision impairment and blindness. However, little is known about the changes occurring in the existing fully formed choroidal blood vessels. We developed a new whole organ culture model for ischemia/hypoxia in rat eyes and investigate the effects of pigment epithelium derived factor (PEDF) protein on the eye tissues. The concentration of oxygen within the vitreous was measured in the enucleated rat eyes and living rats. Then, ischemia was mimicked by incubating the freshly enucleated eyes in medium at 4°C for 14 h. Eyes were fixed immediately after enucleation or were intravitreally injected with PEDF protein or with vehicle before incubation. After incubation, light and electron microscopy (EM) as well as Tunel staining was performed. In the living rats, the intravitreal oxygen concentration was on average at 16.4% of the oxygen concentration in the air and did not change throughout the experiment whereas it was ca. 28% at the beginning of the experiment and gradually decreased over time in the enucleated eyes. EM analysis revealed that the shape of the choriocapillaris changed dramatically after 14 h incubation in the enucleated eyes. The endothelial cells made filopodia-like projections into the vessel lumen. They appeared identical to the labyrinth capillaries found in surgically extracted choroidal neovascular membranes from patients with wet age-related macular degeneration (AMD). These filopodia-like projections nearly closed the vessel lumen and showed open gaps between neighboring endothelial cells. PEDF significantly inhibited labyrinth capillary formation and kept the capillary lumen open. The number of TUNEL-positive ganglion cells and inner nuclear layer cells was significantly reduced in the PEDF-treated eyes compared to the vehicle-treated eyes. The structural changes in the chroidal vessels observed under ischemia/hypoxia conditions can mimic early changes in the process of pathological angiogenesis as observed in wet AMD patients. This new model can be used to investigate short-term drug effects on the choriocapillaris after ischemia/hypoxia and it highlighted the potential of PEDF as a promising candidate for treating wet AMD.


Asunto(s)
Neovascularización Coroidal , Serpinas , Animales , Células Endoteliales , Proteínas del Ojo , Hipoxia , Isquemia , Neovascularización Patológica , Factores de Crecimiento Nervioso , Oxígeno , Ratas
2.
Sci Rep ; 12(1): 7161, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504961

RESUMEN

Lipofuscin is a representative biomarker of aging that is generated naturally over time. Remofuscin (soraprazan) improves age-related eye diseases by removing lipofuscin from retinal pigment epithelium (RPE) cells. In this study, the effect of remofuscin on longevity in Caenorhabditis elegans and the underlying mechanism were investigated. The results showed that remofuscin significantly (p < 0.05) extended the lifespan of C. elegans (N2) compared with the negative control. Aging biomarkers were improved in remofuscin-treated worms. The expression levels of genes related to lysosomes (lipl-1 and lbp-8), a nuclear hormone receptor (nhr-234), fatty acid beta-oxidation (ech-9), and xenobiotic detoxification (cyp-34A1, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A4, cyp-35A5, cyp-35C1, gst-28, and gst-5) were increased in remofuscin-treated worms. Moreover, remofuscin failed to extend the lives of C. elegans with loss-of-function mutations (lipl-1, lbp-8, nhr-234, nhr-49, nhr-8, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A5, and gst-5), suggesting that these genes are associated with lifespan extension in remofuscin-treated C. elegans. In conclusion, remofuscin activates the lysosome-to-nucleus pathway in C. elegans, thereby increasing the expression levels of xenobiotic detoxification genes resulted in extending their lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imidazoles , Lipofuscina/metabolismo , Longevidad/fisiología , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo , Naftiridinas , Transducción de Señal , Xenobióticos/metabolismo , Xenobióticos/farmacología
3.
Free Radic Biol Med ; 182: 132-149, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35219849

RESUMEN

Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging and is associated with retinal degeneration encountered in age-related macular degeneration (AMD) and Stargardt disease (SD). Currently, treatment for lipofuscin-induced retinal degeneration is unavailable. Here, we report that Remofuscin (INN: soraprazan, a tetrahydropyridoether small molecule) reverses lipofuscin accumulation in aged primary human RPE cells and is non-cytotoxic in aged SD mouse RPE cells in vitro. In addition, we show that the removal of lipofuscin after a single intravitreal injection of Remofuscin results in a rescue from retinal degeneration in a mouse model of advanced SD which is even accompanied by an amelioration of the retinal dysfunction. Finally, we demonstrate that the mechanism causing lipofuscinolysis may involve the reactive oxygen species generated via the presence of Remofuscin. These data suggest a possible therapeutic approach to untreatable lipofuscin-mediated diseases like AMD, SD and lipofuscinopathies in neurodegenerative diseases.


Asunto(s)
Lipofuscina , Degeneración Retiniana , Animales , Ratones , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Enfermedad de Stargardt
4.
Pharmacol Res Perspect ; 8(6): e00683, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33164337

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in older people in the developed world while Stargardt's disease (SD) is a juvenile macular degeneration and an orphan disease. Both diseases are untreatable and are marked by accumulation of lipofuscin advancing to progressive deterioration of the retinal pigment epithelium (RPE) and retina and subsequent vision loss till blindness. We discovered that a small molecule belonging to the tetrahydropyridoether class of compounds, soraprazan renamed remofuscin, is able to remove existing lipofuscin from the RPE. This study investigated the drug penetration, distribution, and elimination into the eyes of a mouse model for increased lipofuscinogenesis, following a single intravitreal injection. We measured the time course of concentrations of remofuscin in different eye tissues using high-performance liquid chromatography combined with mass spectroscopy (HPLC-MS). We also visualized the penetration and distribution of 3 H-remofuscin in eye sections up to 20 weeks post-injection using transmission electron microscopic (TEM) autoradiography. The distribution of silver grains revealed that remofuscin accumulated specifically in the RPE by binding to the RPE pigments (melanin, lipofuscin and melanolipofuscin) and that it was still detected after 20 weeks. Importantly, the melanosomes in choroidal melanocytes only rarely bind remofuscin emphasizing its potential to serve as an active ingredient in the RPE for the treatment of SD and dry AMD. In addition, our study highlights the importance of electron microscopic autoradiography as it is the only method able to show drug binding with a high intracellular resolution.


Asunto(s)
Autorradiografía/métodos , Imidazoles/farmacocinética , Inyecciones Intravítreas/métodos , Degeneración Macular/metabolismo , Microscopía Electrónica de Transmisión/métodos , Naftiridinas/farmacocinética , Enfermedad de Stargardt/metabolismo , Animales , Femenino , Imidazoles/administración & dosificación , Imidazoles/análisis , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Masculino , Ratones , Ratones Transgénicos , Naftiridinas/administración & dosificación , Naftiridinas/análisis , Enfermedad de Stargardt/tratamiento farmacológico , Enfermedad de Stargardt/genética , Resultado del Tratamiento , Tritio/administración & dosificación , Tritio/análisis , Tritio/farmacocinética
5.
Biol Open ; 9(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32086250

RESUMEN

Vascular endothelial growth factor (VEGF) is a crucial stimulator for choroidal neovascularization (CNV). Our aim was to develop a reproducible and valid treatment-naive quiescent CNV (i.e. without signs of exudation and with normal visual acuity) rat model by subretinal injection of an adeno-associated virus (AAV)-VEGFA165 vector. The CNV development was longitudinally followed up in vivo by scanning laser ophthalmoscopy/optical coherence tomography, fluorescein and Indocyanine Green angiographies and ex vivo by electron microscopy (EM) and immunohistochemistry. In total, 57 eyes were analysed. In vivo, a quiescent CNV was observed in 93% of the eyes 6 weeks post-transduction. In EM, CNV vessels with few fenestrations, multi-layered basement membranes and bifurcation of endothelial cells were observed sharing the human CNV features. Human VEGF overexpression, multi-layered retinal pigment epithelium (RPE) (RPE65) and macrophages/activated microglia (Iba1) were also detected. In addition, 19 CNV eyes were treated for up to 3 weeks with bevacizumab. The retinal and CNV lesion thickness decreased significantly in bevacizumab-treated CNV eyes compared with untreated CNV eyes 1 week after the treatment. In conclusion, our experimental CNV resembles those seen in patients suffering from treatment-naive quiescent CNV in wet age-related macular degeneration (AMD), and responds to short-term treatment with bevacizumab. Our new model can, therefore, be used to test the long-term effect of new drugs targeting CNV under precisely-defined conditions.


Asunto(s)
Neovascularización Coroidal/genética , Neovascularización Coroidal/terapia , Expresión Génica , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Animales Modificados Genéticamente , Neovascularización Coroidal/diagnóstico , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Angiografía con Fluoresceína , Humanos , Inmunohistoquímica , Ratas , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/ultraestructura , Tomografía de Coherencia Óptica/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
FASEB J ; 34(3): 3693-3714, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31989709

RESUMEN

Stargardt disease (STGD1), known as inherited retinal dystrophy, is caused by ABCA4 mutations. The pigmented Abca4-/- mouse strain only reflects the early stage of STGD1 since it is devoid of retinal degeneration. This blue light-illuminated pigmented Abca4-/- mouse model presented retinal pigment epithelium (RPE) and photoreceptor degeneration which was similar to the advanced STGD1 phenotype. In contrast, wild-type mice showed no RPE degeneration after blue light illumination. In Abca4-/- mice, the acute blue light diminished the mean autofluorescence (AF) intensity in both fundus short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (NIR-AF) modalities correlating with reduced levels of bisretinoid-fluorophores. Blue light-induced RPE cellular damage preceded the photoreceptors loss. In late-stage STGD1-like patient and blue light-illuminated Abca4-/- mice, lipofuscin and melanolipofuscin granules were found to contribute to NIR-AF, indicated by the colocalization of lipofuscin-AF and NIR-AF under the fluorescence microscope. In this mouse model, the correlation between in vivo and ex vivo assessments revealed histological characteristics of fundus AF abnormalities. The flecks which are hyper AF in both SW-AF and NIR-AF corresponded to the subretinal macrophages fully packed with pigment granules (lipofuscin, melanin, and melanolipofuscin). This mouse model, which has the phenotype of advanced STGD1, is important to understand the histopathology of Stargardt disease.


Asunto(s)
Retina/diagnóstico por imagen , Enfermedad de Stargardt/diagnóstico por imagen , Enfermedad de Stargardt/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Electrorretinografía , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas In Vitro , Lipofuscina/metabolismo , Masculino , Melaninas/metabolismo , Ratones , Microscopía Fluorescente , Retina/metabolismo , Tomografía de Coherencia Óptica
7.
EBioMedicine ; 48: 592-604, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31648994

RESUMEN

BACKGROUND: Fundus autofluorescence is a non-invasive imaging technique in ophthalmology. Conventionally, short-wavelength autofluorescence (SW-AF) is used for detection of lipofuscin, a byproduct of the visual cycle which accumulates with age or disease in the retinal pigment epithelium (RPE). Furthermore, near-infrared autofluorescence (NIR-AF) is used as a marker for RPE and choroidal melanin, but contribution of lipofuscin to the NIR-AF signal is unclear. METHODS: We employed fluorescence microscopy to investigate NIR-AF properties of melanosomes, lipofuscin and melanolipofuscin granules in histologic sections of wildtype and Abca4-/- mouse eyes, the latter having increased lipofuscin, as well as aged human donor eyes. Differentiation between these pigments was verified by analytical electron microscopy. To investigate the influence of oxidative and photic stress we used an in vitro model with isolated ocular melanosomes and an in vivo phototoxicity mouse model. FINDINGS: We show that NIR-AF is not an intrinsic property of melanin, but rather increases with age and after photic or oxidative stress in mice and isolated melanosomes. Furthermore, when lipofuscin levels are high, lipofuscin granules also show NIR-AF, as confirmed by correlative fluorescence and electron microscopy in human tissue. However, lipofuscin in albino Abca4-/- mice lacks NIR-AF signals. INTERPRETATION: We suggest that NIR-AF is derived from melanin degradation products that accumulate with time in lipofuscin granules. These findings can help to improve the interpretation of patient fundus autofluorescence data. FUNDING: This work was supported by Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft and Chinese Scholarship Council. Major instrumentation used in this work was supported by Deutsche Forschungsgemeinschaft, the European Fund for Regional Development and the state of Baden-Württemberg.


Asunto(s)
Fondo de Ojo , Lipofuscina/metabolismo , Melaninas/metabolismo , Oxidación-Reducción , Factores de Edad , Animales , Biomarcadores , Coroides/metabolismo , Modelos Animales de Enfermedad , Femenino , Angiografía con Fluoresceína , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/etiología , Degeneración Macular/metabolismo , Masculino , Melanosomas/metabolismo , Ratones , Ratones Noqueados , Imagen Óptica , Estrés Oxidativo , Transporte de Proteínas , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica
8.
PeerJ ; 6: e5215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30038866

RESUMEN

BACKGROUND: Stargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities. METHODS: SD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions. RESULTS: Histological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions. DISCUSSION: The presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.

9.
Radiother Oncol ; 124(3): 462-467, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28711224

RESUMEN

BACKGROUND: Radiotherapy (RT) is used to treat retinoblastoma (Rb), the most frequent ocular tumour in children. Besides eradicating the tumour, RT can cause severe side effects including secondary malignancies. This study aimed to define whether the radioprotector ortho-phospho-L-tyrosine (pTyr) prevents RT-induced side effects and affects local tumour control in a xenograft and a genetic orthotopic Rb mouse model. METHODS: B6;129-Rb1tm3Tyj/J (Rb+/-) and Y79-Rb cell-xenografted nude mice were fractionated external beam irradiated (15 fractions of 5Gy 6MV photons during 3weeks) with or without pTyr pre-treatment (100mg/kg BW, 16h prior to each irradiation). One, three, six and nine months after RT, tumour control and RT toxicity were evaluated using in vivo imaging and histology. We also analysed pTyr dependant post irradiation cell survival and p53 activity in vitro. RESULTS: In vitro pTyr pre-treatment showed no radioprotection on Y79 cells, but led to p53 stabilisation in unirradiated Y79 cells and to a facilitation of radiation-induced p21 up-regulation, confirming a modulation of p53 activity by pTyr. In both mouse models, secondary tumours were undetectable. In Rb+/- mice, pTyr significantly lowered RT-induced greying of the fur, retinal thickness reduction and photoreceptor loss. However, in the xenografted Rb model, pTyr considerably decreased RT-mediated tumour control, which was observed in 16 out of 22 control eyes but in none of the 24 pTyr treated eyes. CONCLUSIONS: In Rb+/- mice pTyr significantly prevents RT-induced greying of the fur as well as retinal degeneration. However, since non-irradiated control mice were not used in our study, a formal possibility exists that the effect shown in the retina of Rb+/- mice may be due to ageing of the animals and/or actions of pTyr alone. Unfortunately, as tested in a xenograft model, pTyr treatment reduced the control of Rb tumours.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Fosfotirosina/farmacología , Protectores contra Radiación/farmacología , Neoplasias de la Retina/radioterapia , Retinoblastoma/radioterapia , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Ratones , Retinoblastoma/patología , Proteína p53 Supresora de Tumor/fisiología
10.
Graefes Arch Clin Exp Ophthalmol ; 254(12): 2401-2409, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27752777

RESUMEN

PURPOSE: Anti-vascular endothelial growth factor (VEGF) drugs are used to treat neovascular eye diseases. Some of these drugs contain Fc fragments (Fc), but it is unknown how their mode of action is influenced by Fc. Therefore, this study investigated the effects of Fc on rat eyes after intravitreal injection. METHODS: Eighteen Long-Evans rats were intravitreally injected with sterile, biotin-labeled rat Fc (9.1 µg in 5 µl PBS). For control, 5 µl PBS was injected in another nine rats. Animals were sacrificed between 1 and 3 days (group 1), 7 days (group 2), and 14 days (group 3) after injection. The right eyes were examined by electron microscopy (EM). The left eyes were stained by immunohistochemistry to investigate the distribution of Fc and the presence of macrophages. RESULTS: After 1 day, Fc had penetrated into the anterior chamber and the retina up to the inner nuclear layer, and was located especially in retinal vessels. High numbers of infiltrating cells were present within the vitreous, around the ciliary body, anterior chamber and inside the retina 1-3 days after Fc injection (p < 0.02 group 1 vs. control). Immunohistochemistry and EM showed that they were macrophages or granulocytes in close association with Fc. Ultrastructurally, there were effects on the blood vessels such as thrombocyte activation and fibrin formation. CONCLUSIONS: Biotin labeling is ideal for investigating the distribution of intravitreally injected proteins in ocular tissue. Fc fragments at a dose corresponding to their concentration in standard AMD treatments induced inflammation, and particularly the attraction of immune-competent cells. This may be associated with the risk of inflammation or endophthalmitis after anti-VEGF treatment, and needs further investigation.


Asunto(s)
Endoftalmitis/tratamiento farmacológico , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Animales , Modelos Animales de Enfermedad , Endoftalmitis/metabolismo , Endoftalmitis/patología , Inmunohistoquímica , Factores Inmunológicos/administración & dosificación , Inyecciones Intravítreas , Microscopía Electrónica , Ratas , Ratas Long-Evans , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo , Cuerpo Vítreo/patología
11.
Biol Open ; 5(11): 1625-1630, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27694105

RESUMEN

Retinoblastoma (Rb) is the most frequent primary intraocular tumour in children and, if left untreated, can cause death. Preclinical animal models that mimic molecular, genetic, and cellular features of cancers are essential for studying cancer and searching for promising diagnosis and treatment modalities. There are several models described for Rb, but none of them fully meet our requirements. The aim of this study was to create a novel xenograft-nude mouse-model with broad application possibilities, which closely resembles the clinical observations of Rb patients and which could be used to investigate the development and spread of the tumour by using scanning laser ophthalmoscopy/optical coherence tomography (SLO/OCT) as well as histology methods. We injected human retinoblastoma Y79 cells intravitreally in both eyes of immune-deficient nude mice. The incidences of retinoblastoma as well as growth velocity were analysed 3, 6, 9 and 12 weeks after cell injection in vivo by SLO/OCT as well as ex vivo by electron microscopy (EM) and hematoxylin/eosin (HE) staining. Moreover, internal organs were histologically screened for potentially occurring metastases. Three weeks post-injection, animals developed a retinoblastoma, and after five weeks tumour growth resulted in swelling of the eyes in individual animals, showing a similar phenotype to that of untreated Rb patients at advanced stages of tumour-development. After 12 weeks, 67.5% of all analysed eyes (29 of 42) contained a retinoblastoma. At early stages of Rb development, the SLO/OCT analysis correlated with the histology results. If the tumours were too large, only histological investigations were feasible. The ultrastructural characteristics of the xenograft-tumours were very similar to those described for patient's tumours. In one mouse, brain metastases were observed. Our retinoblastoma mouse model closely resembles the human disease. SLO/OCT can be used for the detection of Rb at early stages of development and could be used for monitoring the success of future therapies.

12.
Graefes Arch Clin Exp Ophthalmol ; 254(6): 1117-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27106625

RESUMEN

PURPOSE: To investigate the effects of intravitreal ranibizumab (Lucentis®) and aflibercept (Eylea®) on the ciliary body and the iris of 12 cynomolgus monkeys with regard to the fenestrations of their blood vessels. MATERIALS AND METHODS: Structural changes in the ciliary body and in the iris were investigated with light, fluorescent, and transmission electron microscopy (TEM). The latter was used to specifically quantify fenestrations of the endothelium of blood vessels after treatment with aflibercept and ranibizumab. Each of the two ciliary bodies treated with aflibercept and the two treated with ranibizumab and their controls were examined after 1 and 7 days respectively. Ophthalmological investigations including funduscopy and intraocular pressure measurements were also applied. RESULTS: Ophthalmological investigations did not reveal any changes within the groups. Both drugs reduced the VEGF concentration in the ciliary body pigmented epithelium. The structure of the ciliary body was not influenced, while the posterior pigmented epithelium of the iris showed vacuoles after aflibercept treatment. Ranibizumab was mainly concentrated on the surface layer of the ciliary epithelium, in the blood vessel walls and the lumen of some of the blood vessels, and in the cells of the epithelium of the ciliary body. Aflibercept was more concentrated in the stroma and not in the cells of the epithelium, but as with ranibizumab, also in the blood vessel walls and some of their lumina, and again on the surface layer of the epithelium. Both aflibercept-and ranibizumab-treated eyes showed a decreased number of fenestrations of the capillaries in the ciliary body compared to the untreated controls. On day 1 and day 7, aflibercept had fewer fenestrations than the ranibizumab samples of the same day. CONCLUSIONS: Both aflibercept and ranibizumab were found to reach the blood vessel walls of the ciliary body, and effectively reduced their fenestrations. Aflibercept might eliminate VEGF to a greater extent, possibly due to a higher elimination of fenestrations in a shorter time. Moreover, the vacuoles found in the iris need further research, in order to evaluate whether they carry a possible pathological potential.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Cuerpo Ciliar/efectos de los fármacos , Iris/efectos de los fármacos , Ranibizumab/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Cuerpo Ciliar/irrigación sanguínea , Cuerpo Ciliar/ultraestructura , Angiografía con Fluoresceína , Presión Intraocular , Inyecciones Intravítreas , Iris/irrigación sanguínea , Iris/ultraestructura , Macaca fascicularis , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Receptores de Factores de Crecimiento Endotelial Vascular , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...