Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 392(3): 153-68, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21194362

RESUMEN

The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.


Asunto(s)
Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Dominio Catalítico , Línea Celular , Citocinas/metabolismo , ADN/biosíntesis , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Humanos , Linfocitos/enzimología , Modelos Moleculares , Neuropéptido Y/metabolismo
2.
Biol Chem ; 392(3): 169-87, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21194378

RESUMEN

The discovery of the DP4-related enzymes DP8 and DP9 raised controversial discussion regarding the physiological and pathophysiological function of distinct members of the DP4 family. Particularly with regard to their potential relevance in regulating immune functions, it is of interest to know which role the subcellular distribution of the enzymes play. Synthetic substrates as well as low molecular weight inhibitors are widely used as tools, but little is yet known regarding their features in cell experiments, such as their plasma membrane penetration capacity. The fluorogenic substrates Gly-Pro-AMC or (Ala-Pro)2-R110 predominantly detect plasma membrane-bound activities of viable cells (less than 0.1% of fluorochromes R110 or AMC inside viable cells after 1 h incubation). Additionally, the selective and non-selective DP8/9 inhibitors allo-Ile-isoindoline and Lys[Z(NO2)]-pyrrolidide were found to be incapable of passing the plasma membrane easily. This suggests that previously reported cellular effects are not due to inhibition of the cytosolic enzymes DP8 or DP9. Moreover, our enzymatic studies with viable cells provided evidence that DP8 and/or DP9 are also present on the surface of immune cells under certain circumstances and could gain relevance particularly in the absence of DP4 expression. In summary, in cells which do express DP4 on the surface, this archetypical member of the DP4 family is the most relevant peptidase in the regulation of cellular functions.


Asunto(s)
Dipeptidasas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Espacio Intracelular/metabolismo , Animales , Línea Celular , ADN/biosíntesis , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Colorantes Fluorescentes/metabolismo , Humanos , Indoles/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Noqueados , Neuropéptido Y/metabolismo , Pirrolidinas/metabolismo , Especificidad por Sustrato , Linfocitos T/enzimología
3.
J Med Chem ; 51(13): 3985-4001, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18558669

RESUMEN

Inhibitors of histone deacetylases (HDAC) are currently developed for the treatment of cancer. These include compounds with a sulfur containing head group like depsipeptide, alkylthiols, thiocarboxylates, and trithiocarbonates with a carbonyl group in the alpha-position. In the present investigation, we report on the synthesis and comprehensive SAR analysis of HDAC inhibitors bearing a tri- or dithiocarbonate motif. Such trithiocarbonates are readily accessible from either preformed or in situ prepared alpha-halogenated methylaryl ketones. A HDAC isotype selectivity and a substrate competitive mode-of-action is shown for defined analogues. Exploration of the head group showed the necessity of the dithio-alpha-carbonyl motif for potent HDAC inhibition. Highly potent, substrate competitive HDAC6 selective inhibitors were identified (12ac:IC 50 = 65 nM and K i = 110 nM). Trithiocarbonate analogues with an aminoquinoline-substituted pyridinyl-thienoacetyl cap demonstrate a cytotoxicity profile and potency comparable to that of suberoylanilide hydroxamic acid (SAHA) as an approved cancer drug.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Tionas/síntesis química , Tionas/farmacología , Acetilación , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , Estructura Molecular , Relación Estructura-Actividad , Tionas/química
4.
Anal Biochem ; 372(1): 72-81, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17868634

RESUMEN

Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.


Asunto(s)
Histona Desacetilasas/metabolismo , Robótica , Acetilación , Automatización , Inhibidores Enzimáticos/farmacología , Células HeLa , Inhibidores de Histona Desacetilasas , Humanos , Cinética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...