Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041941

RESUMEN

BACKGROUND: Prompt differentiation of viral from bacterial infections in febrile children is pivotal in reducing antibiotic overuse. Myxovirus resistance protein A (MxA) is a promising viral biomarker. METHODS: We evaluated the accuracy of a point-of-care (POC) measurement for blood MxA level compared to the reference enzyme immunoassay in 228 febrile children aged between 4 weeks and 16 years, enrolled primarily at the emergency department (ED). Furthermore, we analyzed the ability of MxA to differentiate viral from bacterial infections. RESULTS: The mean difference between POC and reference MxA level was -76 µg/L (95% limits of agreement from -409 to 257 µg/L). Using a cutoff of 200 µg/L, POC results were uniform with the reference assay in 199 (87.3%) children. In ED-collected samples, the median POC MxA levels (interquartile range) were 571 [240-955] µg/L in children with viral infections, 555 (103-889) µg/L in children with viral-bacterial co-infections, and 25 (25-54) µg/L in children with bacterial infections (P < 0.001). MxA cutoff of 101 µg/L differentiated between viral and bacterial infections with 92% sensitivity and 91% specificity. CONCLUSIONS: POC MxA measurement demonstrated acceptable analytical accuracy compared to the reference method, and good diagnostic accuracy as a biomarker for viral infections.

2.
Biomedicines ; 12(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39062148

RESUMEN

Hundreds of millions of people worldwide are expected to suffer from diabetes mellitus. Diabetes is characterized as a dynamic and heterogeneous disease that requires deeper understanding of the pathophysiology, genetics, and metabolic shaping of this disease and its macro/microvascular complications. Macrophages play an essential role in regulating local immune responses, tissue homeostasis, and disease pathogenesis. Here, we have analyzed transforming growth factor beta 1 (TGFß1)/Smad signaling in primary human macrophages grown in normal (NG) and high-glucose (HG; +25 mM glucose) conditions. Cell culture lactate concentration and cellular phosphofructokinase (PFK) activity were increased in HG concentrations. High glucose levels in the growth media led to increased macrophage mRNA expression of TGFß1, and TGFß-regulated HAMP and PLAUR mRNA levels, while the expression of TGFß receptor II remained unchanged. Stimulation of cells with TGFß1 protein lead to Smad2 phosphorylation in both NG and HG conditions, while the phosphorylation of Smad1/5 was detected only in response to TGFß1 stimulation in HG conditions. The use of the specific Alk1/2 inhibitor dorsomorphin and the Alk5 inhibitor SB431542, respectively, revealed that HG conditions led TGFß1 to activation of Smad1/5 signaling and its downstream target genes. Thus, high-glucose activates TGFß1 signaling to the Smad1/5 pathway in primary human macrophages, which may contribute to cellular homeostasis in a harmful manner, priming the tissues for diabetic complications.

3.
Commun Med (Lond) ; 4(1): 28, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396065

RESUMEN

BACKGROUND: Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS: We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS: In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS: Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.


During the COVID-19 pandemic, mass vaccination efforts against SARS-CoV-2 infection have provided effective protection against the virus and helped reduce the severity of symptoms in infected individuals. However, it is not well established whether the existing vaccines can provide the same protection against new and emerging SARS-CoV-2 variants that develop over time as the virus evolves. In this study, we tested combinations of three-dose COVID-19 vaccines given in random order to protect against all SARS-CoV-2 variants in circulation including the newest being Omicron variants. We demonstrate that more than half of the population who received the three-dose vaccine combinations were infected with SARS-CoV-2 Omicron variants after receiving the last vaccine dose. These findings indicate the need to develop new vaccine candidates against emerging SARS-CoV-2 variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA