Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 645: 123384, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678472

RESUMEN

The current work aims to design and provide a preliminary IND-enabling study of selective BMX inhibitors for cancer therapeutics development. BMX is an emerging target, more notably in oncological and immunological diseases. In this work, we have employed a predictive AI-based platform to design the selective inhibitors considering the novelty, IP prior protection, and drug-likeness properties. Furthermore, selected top candidates from the initial iteration of the design were synthesized and chemically characterized utilizing 1H NMR and LC-MS. Employing a panel of biochemical (enzymatic) and cancer cell lines, the selected molecules were tested against these assays. In addition, we used artificial intelligence to predict and evaluate several critical IND-focused physicochemical and pharmacokinetics values of the selected molecules. A secondary objective of the current work was also to validate the sole role of BMX in animal models known to be mediated by BMX. More than 50 molecules were designed in the present study employing five novel discovered scaffolds. Two molecules were nominated for further IND-focused studies. Compound II showed promising in-vitro activity against BMX in both enzymatic assays compared to other kinases and in cancer cell lines with known BMX overexpression. Interestingly, compound II showed very favorable physicochemical and pharmacokinetics properties as predicted by the used platforms. The animal study further confirmed the sole role of BMX in the disease model. The current work provides promising data on a selective BMX inhibitor as a potential lead for therapeutics development, and the asset is currently in the optimization stage. Notably, the current study shows a framework for a combined approach employing both AI and experimentation that can be used by academic labs in their research programs to more streamline programs into IND-focused to be bridged easily for further clinical development with industrial partners.

2.
J Pharm Sci ; 106(4): 1051-1061, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28007565

RESUMEN

The anticancer agent, carfilzomib, has a unique α-keto-epoxide warhead. The model α-keto-epoxide, N-((S)-1-((R)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)pivalamide (1), along with a few of its degradation products was synthesized and studied. The kinetics of hydrolysis and identification of some of the degradation products of 1 were performed at pH values 2, 4, 5, 7, and 8 at 25°C, 40°C, and 60°C and followed by HPLC and liquid chromatography-mass spectroscopy, respectively. 1 degraded independent of pH between pH values 4-7 but showed some acid catalysis at pH 2 and base catalysis at pH 8. Energy of activation, Ea, values progressed from 16.8 ± 0.1 at pH 2 to 20.3 ± 0.1 kcal/mole at pH 8. The major initial degradation products in the pH range 4-5 were the S,R diol (hydrolysis of the epoxide), and S,R chlorohydrin (in the presence of chloride ions). At pH 7-8, the major products were the R,R diastereomer and the S,R and R,R diols. At pH 2, additional unidentified products were seen with relative retention times of 0.28, 0.30, 0.33, and 0.35 and masses equivalent to the diols. The study of 1 provides insight into the degradation of future drugs that use an α-keto-epoxide functional group.


Asunto(s)
Antineoplásicos/química , Compuestos Epoxi/química , Modelos Químicos , Inhibidores de Proteasoma/química , Antineoplásicos/metabolismo , Compuestos Epoxi/metabolismo , Soluciones Farmacéuticas/química , Soluciones Farmacéuticas/metabolismo , Inhibidores de Proteasoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...