Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1369397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495369

RESUMEN

Ultraviolet (UV)-B radiation is considered one of the major detrimental rays coming from the Sun. UV-B radiation has a harmful impact on plant growth and development. The effect of UV-B radiation was studied on 64 rice (Oryza sativa L.) genotypes during the vegetative season. An equal number of genotypes from the japonica (50%) and indica (50%) subspecies were phenotyped using the Soil-Plant-Atmosphere-Research (SPAR) units. The 10 kJ UV-B was imposed 12 days after planting (DAP) and continued for three weeks (21 d). Based on the combined ultraviolet-B radiation response index (CUVBRI) for each genotype, the 64 rice genotypes were classified into sensitive, moderately sensitive, moderately tolerant, and tolerant. Various shoot traits, such as plant height, tiller, and leaf numbers, were measured. We also studied critical root phenological traits like root volume, diameter, tips, and forks. Out of all the studied shoot traits, leaf area showed maximum reduction for both indica (54%) and japonica (48%). Among the root traits, root length decreased by negligible (1%) for indica as compared to japonica (5%), while root crossing and forks showed a maximum decline for japonica (37 and 42%), respectively. This study is timely, meaningful, and required because it will help breeders select a tolerant or sensitive rice line for better yield and production under abiotic stresses.

2.
Front Plant Sci ; 13: 871331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212327

RESUMEN

Rice (Oryza sativa) is a human staple food and serves as a model organism for genetic and molecular studies. Few studies have been conducted to determine the effects of ultraviolet-B (UV-B) stress on rice. UV-B stress triggers morphological and physiological changes in plants. However, the underlying mechanisms governing these integrated responses are unknown. In this study, we conducted a proteomic response of rice leaves to UV-B stress using two-dimensional gel electrophoresis and identified the selected proteins by mass spectrometry analysis. Four levels of daily biologically effective UV-B radiation intensities were imposed to determine changes in protein accumulation in response to UV-B stress: 0 (control), 5, 10, and 15 kJ m-2 d-1in two cultivars, i.e., IR6 and REX. To mimic the natural environment, we conducted this experiment in Sunlit Soil-Plant-Atmosphere-Research (SPAR) chambers. Among the identified proteins, 11% of differentially expressed proteins were found in both cultivars. In the Rex cultivar, only 45% of proteins are differentially expressed, while only 27.5% were expressed in IR6. The results indicate that REX is more affected by UV-B stress than IR6 cultivars. The identified protein TSJT1 (spot 16) in both cultivars plays a crucial role in plant growth and development during stress treatment. Additionally, we found that UV-B stress altered many antioxidant enzymes associated with redox homeostasis and cell defense response. Another enzyme, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has been identified as spot 15, which plays an essential role in glycolysis and cellular energy production. Another vital protein identified is glycosyl hydrolase (GH) as spot 9, which catalyzes the hydrolysis of glycosidic bonds in cell wall polymers and significantly affects cell wall architecture. Some identified proteins are related to photosynthesis, protein biosynthesis, signal transduction, and stress response. The findings of our study provide new insights into understanding how rice plants are tailored to UV-B stress via modulating the expression of UV-B responsive proteins, which will help develop superior rice breeds in the future to combat UV-B stress. Data are available via ProteomeXchange with identifier PXD032163.

3.
Plants (Basel) ; 11(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36145733

RESUMEN

Drought stress is one of the most devastating abiotic factors limiting plant growth and development. Devising an efficient and rapid screening method at the seedling stage is vital in identifying genotypes best suited under drought conditions. An experiment was conducted to assess 74 rice genotypes for drought tolerance using specially designed mini-hoop structures. Two treatments were imposed on rice seedlings, including 100% moisture and a 50% moisture regime. Several shoot morpho-physiological traits and root traits were measured and analyzed. The genotypes exhibited a wide range of variability for the measured traits, with the leaf area showing the most significant variation, followed by plant height, tiller number, and shoot dry weight. In contrast, the drought did not significantly affect most root traits. The germplasm was classified into different categories using cumulative drought stress response indices (CDSRI); 19 genotypes (26%) were identified as drought sensitive, and 33 (45%), 15 (20%), and 7 (9%) were determined as low, moderately, and highly drought-tolerant, respectively. Genotypes IR86638 and IR49830 were the most and least drought-tolerant, respectively. Overall, a poor correlation was observed between CDSRI, total shoot traits (R2 = 0.36), and physiological parameters (R2 = 0.10). A strong linear correlation was found between CDSRI and root traits (R2 = 0.81), suggesting that root traits are more crucial and better descriptors in screening for drought tolerance. This study can help rice breeders and scientists to accelerate breeding by adopting a mini-hoop rapid screening method. The tolerant genotypes could serve as appropriate donor parents, progenies, and potential genotypes for developing drought-tolerant commercial cultivars.

4.
PeerJ ; 9: e11752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322324

RESUMEN

Rice (Oryza sativa L.) is an essential staple food crop, but the per acre average rice yield is less than its substantial potential in many countries. Rice breeders and growers would benefit from a robust genotypes with better morpho-physiological and yield-related traits. Here, seventy-four new rice genotypes were phenotyped over two years for their gas exchange and yield potential-related traits under Mississippi rice-growing conditions. A wide range of variability was observed among genotypes for all measured traits. Detailed phenotyping of rice genotypes revealed two key relationships that function together to contribute to yield potential under the southern US climate. The first one, grain yield, grain number, and spikelet fertility, showed considerable correlation (r = 0.45 to 0.79, p < 0.001) to harvest index. Conversely, days to anthesis had a high and negative correlation with harvest index (r = -0.79, p < 0.001), which suggests that selection for short duration genotypes with efficient partitioning could improve the yields under southern US climatic conditions. Additive response index revealed a higher positive association with yield traits (R2 = 0.59) than physiological (R2 = 0.28) and morphological traits (R2 = 0.21). Compared with the commercial genotype Rex, 21.6% and 47.3% of the rice genotypes had a higher gas exchange and yield response scores. IR08A172, IR07K142 and IR07F287 were ranked as high performers in physiological and yield response indices. Our study highlights that selection for short-duration yield-related traits with efficient sink capacity traits is desirable for future breeding programs.

5.
Rice (N Y) ; 12(1): 57, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363935

RESUMEN

BACKGROUND: Rice (Oryza sativa L.) is one of the major staple food crops consumed globally. However, rice production is severely affected by high salinity levels, particularly at the seedling stage. A good solution would be the development of an efficient screening methodology to identify genotypes possessing genes for salt tolerance. RESULT: A new salinity tolerance screening technique using rice seedlings in pot-culture was tested. This method controls soil heterogeneity by using pure sand as a growth medium and minimizes unexpected extreme weather conditions with a movable shelter. Seventy-four rice genotypes were screened at three salinity treatments including high salt stress (electrical conductivity (EC) 12 dSm- 1), moderate salt stress (EC 6 dSm- 1), and control (no salt stress), imposed 1 week after emergence. Several shoot and root morpho-physiological traits were measured at 37 days after sowing. A wide range of variability was observed among genotypes for measured traits with root traits being identified as the best descriptors for tolerance to salt stress conditions. Salt stress response indices (SSRI) were used to classify the 74 rice genotypes; 7 genotypes (9.46%) were identified as salt sensitive, 27 (36.48%) each as low and moderately salt tolerant, and 13 (17.57%) as highly salt tolerant. Genotypes FED 473 and IR85427 were identified as the most salt tolerant and salt sensitive, respectively. These results were further confirmed by principal component analysis (PCA) for accuracy and reliability. CONCLUSION: Although tolerant genotypes still need to be confirmed in field studies and tolerance mechanisms identified at the molecular level, information gained from this study could help rice breeders and other scientists to accelerate breeding by selecting appropriate donor parents, progenies and potential genotypes at early growth stages necessary for salinity tolerance research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...