Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 27(5): 481-491, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37641810

RESUMEN

The ß subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the ß subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the ß1 [cacb1(344-359)], ß2 [cacb2(392-407)], ß3 [cacb3(292-307)], and ß4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.

2.
Korean J Pain ; 35(4): 433-439, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175342

RESUMEN

Background: Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods: [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective µ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 µg for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results: Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions: Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.

3.
Life Sci ; 264: 118690, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130076

RESUMEN

AIMS: Voltage-dependent calcium channels (VDCCs) play an important role in various physiological functions in the nervous system and the cardiovascular system. In L-, N-, P/Q-, and R-type VDCCs, ß subunit assists the channels for membrane targeting and modulates channel properties. In this study, we investigated whether an inhibition of the ß subunit binding to α subunit, the pore-forming main subunit of VDCCs, have any effect on channel activation and physiological functions. MAIN METHODS: Peptides derived from the specific regions of ß subunit that bind to the α-interaction domain in I-II linker of α subunit were manufactured, presuming that the peptides interrupt α-ß subunit interaction in the channel complex. Then, they were tested on voltage-activated Ca2+ currents recorded in acutely isolated trigeminal ganglion (TG) neurons, excitatory postsynaptic currents (EPSCs) in the spinal dorsal horn neurons, and arterial blood pressure (BP) recorded from the rat femoral artery. KEY FINDINGS: When applied internally through patch pipettes, the peptides decreased the peak amplitudes of the voltage-activated Ca2+ currents. After fusing with HIV transactivator of transcription (TAT) sequence to penetrate cell membrane, the peptides significantly decreased the peak amplitudes of Ca2+ currents and the peak amplitudes of EPSCs upon the external application through bath solution. Furthermore, the TAT-fused peptides dose dependently reduced the rat BP when administered intravenously. SIGNIFICANCE: These data suggest that an interruption of α-ß subunit association in VDCC complex inhibits channel activation, thereby reducing VDCC-mediated physiological functions such as excitatory neurotransmission and arterial BP.


Asunto(s)
Presión Arterial/fisiología , Canales de Calcio Tipo L/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Fragmentos de Péptidos/metabolismo , Subunidades de Proteína/metabolismo , Transmisión Sináptica/fisiología , Animales , Presión Arterial/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Fragmentos de Péptidos/farmacología , Subunidades de Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA