Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(4): 908-915, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38525961

RESUMEN

The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.


Asunto(s)
Péptidos de Penetración Celular , Colorantes Fluorescentes , Hidrolasas , Humanos , Transporte Biológico , Péptidos de Penetración Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Colorantes Fluorescentes/química
2.
J Am Chem Soc ; 145(12): 6615-6621, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36920197

RESUMEN

We introduce a versatile strategy for the bioreversible modification of proteins. Our strategy is based on a tricomponent molecule, synthesized in three steps, that incorporates a diazo moiety for chemoselective esterification of carboxyl groups, a pyridyl disulfide group for late-stage functionalization with thiolated ligands, and a self-immolative carbonate group for esterase-mediated cleavage. Using cytochrome c (Cyt c) and the green fluorescent protein (GFP) as models, we generated protein conjugates modified with diverse domains for cellular delivery that include a small molecule, targeting and cell-penetrating peptides (CPPs), and a large polysaccharide. As a proof of concept, we used our strategy to effect the delivery of proteins into the cytosol of live mammalian cells in the presence of serum. The cellular delivery of functional Cyt c, which induces apoptosis, highlighted the advantage of bioreversible conjugation on a carboxyl group versus irreversible conjugation on an amino group. The ease and utility of this traceless modification provide new opportunities for chemical biologists.


Asunto(s)
Péptidos de Penetración Celular , Esterasas , Animales , Proteínas Fluorescentes Verdes/química , Esterasas/metabolismo , Péptidos de Penetración Celular/metabolismo , Esterificación , Compuestos Azo , Mamíferos/metabolismo
3.
Mol Pharm ; 19(11): 3869-3876, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36036888

RESUMEN

The carboxyl groups of a protein can be esterified by reaction with a diazo compound, 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide. This esterification enables the entry of the protein into the cytosol of a mammalian cell, where the nascent ester groups are hydrolyzed by endogenous esterases. The low aqueous solubility of the ensuing esterified protein is, however, a major practical challenge. Solubility screening revealed that ß-cyclodextrin (ß-CD) is an optimal solubilizing agent for esterified green fluorescent protein (est-GFP). Its addition can increase the recovery of est-GFP by 10-fold. α-CD, γ-CD, and cucurbit-7-uril are less effective excipients. 1H NMR titration experiments revealed that ß-CD encapsulates the hydrophobic tolyl group of ester conjugates with Ka = 321 M-1. Combining l-arginine and sucrose with ß-CD enables the nearly quantitative recovery of est-GFP. Thus, the insolubility of esterified proteins can be overcome with excipients.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Animales , Solubilidad , Excipientes/química , beta-Ciclodextrinas/química , Ésteres/química , Esterificación , Ciclodextrinas/química , Mamíferos
4.
Org Lett ; 23(8): 3110-3114, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33818092

RESUMEN

α-Aryl-α-diazoamides were synthesized in two steps under mild conditions. This expeditious route employs Pd-catalyzed C-H arylation of N-succinimidyl 2-diazoacetate to obtain N-succinimidyl 2-aryl-2-diazoacetates, followed by aminolysis. The ensuing diazo compounds can esterify carboxyl groups in aqueous solution, and the ester products are substrates for an esterase. The broad scope of the synthetic route enables the continued development of diazo compounds in chemical biology.


Asunto(s)
Compuestos Azo/síntesis química , Paladio/química , Compuestos Azo/química , Catálisis , Ésteres , Estructura Molecular , Estereoisomerismo
5.
Org Biomol Chem ; 18(30): 5747-5763, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32691820

RESUMEN

Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.


Asunto(s)
Colorantes Fluorescentes
6.
Methods Enzymol ; 640: 309-326, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32560804

RESUMEN

Small molecule probes are essential tools for biomedical applications, with utility as cellular stains, labels for biomolecules, environmental indicators, and biosensors. However, a fluorophore's characteristics are difficult to predict solely through calculations or rational design, making the development of a core scaffold that is amenable to late stage functionalization particularly desirable. In this chapter, we describe the synthesis and application of a tunable quinoline scaffold that can be readily functionalized and optimized for a variety of imaging applications. We present a facile synthesis that results in three functional domains that influence the compound's photophysical properties, structural diversity, and polarization. We demonstrate a method with which to study the scaffold's tunable photophysical properties as a result of its structure and environment, and finally exhibit its utility in pH sensitive, live-cell imaging.


Asunto(s)
Técnicas Biosensibles , Quinolinas , Colorantes Fluorescentes
7.
J Am Chem Soc ; 141(5): 1893-1897, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30657670

RESUMEN

Photoconvertible fluorophores can enable the visualization and tracking of a specific biomolecules, complexes, and cellular compartments with precise spatiotemporal control. The field of photoconvertible probes is dominated by fluorescent protein variants, which can introduce perturbations to the target biomolecules due to their large size. Here, we present a photoconvertible small molecule, termed CPX, that can be conjugated to any target through azide-alkyne cycloaddition ("click" reaction). To demonstrate its utility, we have applied CPX to study (1) trafficking of biologically relevant synthetic vesicles and (2) intracellular processes involved in transmission of α-synuclein (αS) pathology. Our results demonstrate that CPX can serve as a minimally perturbing probe for tracking the dynamics of biomolecules.


Asunto(s)
Compuestos Aza/química , Colorantes Fluorescentes/química , Bibliotecas de Moléculas Pequeñas/química , alfa-Sinucleína/análisis , Química Clic , Estructura Molecular , Procesos Fotoquímicos
8.
J Am Chem Soc ; 140(30): 9486-9493, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028130

RESUMEN

Small-molecule fluorescent probes are powerful tools for chemical biology; however, despite the large number of probes available, there is still a need for a simple fluorogenic scaffold, which allows for the rational design of molecules with predictable photophysical properties and is amenable to concise synthesis for high-throughput screening. Here, we introduce a highly modular quinoline-based probe containing three strategic domains that can be easily engineered and optimized for various applications. Such domains are allotted for (1) compound polarization, (2) tuning of photophysical properties, and (3) structural diversity. We successfully synthesized our probes in two steps from commercially available starting materials in overall yields of up to 95%. Facile probe synthesis was permitted by regioselective palladium-catalyzed cross-coupling, which enables combinatorial development of structurally diverse quinoline-based fluorophores. We have further applied our probes to live-cell imaging, utilizing their unique two-stage fluorescence response to intracellular pH. These studies provide a full demonstration of our strategy in rational design and stream-lined probe discovery to reveal the diverse potential of quinoline-based fluorescent compounds.


Asunto(s)
Colorantes Fluorescentes/química , Quinolinas/química , Diseño de Fármacos , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/efectos de la radiación
9.
J Phys Org Chem ; 31(8)2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30983696

RESUMEN

Acridonylalanine (Acd) is a useful fluorophore for studying proteins by fluorescence spectroscopy, but it can potentially be improved by being made longer wavelength or brighter. Here, we report the synthesis of Acd core derivatives and their photophysical characterization. We also performed ab initio calculations of the absorption and emission spectra of Acd derivatives, which agree well with experimental measurements. The amino acid aminoacridonylalanine (Aad) was synthesized in forms appropriate for genetic incorporation and peptide synthesis. We show that Aad is a superior FRET acceptor to Acd in a peptide cleavage assay, and that Aad can be activated by an aminoacyl tRNA synthetase for genetic incorporation. Together, these results show that we can use computation to design enhanced Acd derivatives which can be used in peptides and proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...