Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
1.
Phytomedicine ; 131: 155775, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38838401

RESUMEN

BACKGROUND: The cyclin-dependent kinase 4 (CDK4) interacts with its canonical and non-canonical substrates modulating the cell cycle in tumor cells. However, the potential substrates and the beyond-cell-cycle-regulated functions of CDK4 in colon cancer (CC) are still unknown. Hernandezine (HER) is previously verified to induce G0/G1 phase arrest and autophagic cell death in human cancer cells, which implies that HER might target G0/G1 phase-related proteins, including CDK4. PURPOSE: The present study tried to investigate the glycolytic metabolism and oxidative stress functions of CDK4 in colon cancer. Furthermore, the inhibitory effects and potential binding sites of HER on CDK4, as well as its anti-tumor activity were investigated in CC cells. METHODS: The mass spectrometry assay was performed to identify potential endogenous substrates of CDK4 and the correlation between glycolytic metabolic rate and CDK4 level in COAD patient tissues. Meanwhile, after inhibiting the activity or the expression of CDK4, the binding capacity of CDK4 to PKM2 and NRF2 and the latter two protein distributions in cytoplasm and nucleus were detected in CC cells. In vitro, the regulatory effects of the CDK4-PKM2-NRF2 axis on glycolysis and oxidative stress were performed by ECAR, OCR, and ROS assay. The inhibitory effect of HER on CDK4 activity was explored in CC cells and the potential binding sites were predicted and testified in vitro. Furthermore, tumor growth inhibition of HER by suppressing the CDK4-PKM2-NRF2 axis was also investigated in vitro and in vivo. RESULTS: PKM2 and NRF2 were identified as endogenous substrates of CDK4 and, high-expressed CDK4 was associated with low-level glycolysis in COAD. In vitro, inactivated CDK4 facilitated CDK4-PKM2-NRF2 complex formation which resulted in 1) inhibited PKM2 activity and retarded the glycolytic rate; 2) cytoplasm-detained NRF2 failed to transcript anti-oxidative gene expressions and induced oxidant stress. Additionally, as a CDK4 inhibitor, HER developed triple anti-tumor effects including induced G0/G1 phase arrest, suppressed glycolysis, and disrupted the anti-oxidative capacity of CC cells. CONCLUSION: The results first time revealed that CDK4 modulated glycolytic and anti-oxidative capacity of CC cells via bound to its endogenous substrates, PKM2 and NRF2. Additionally, 140Asp145Asn amino acid sites of CDK4 were potential targets of HER. HER exerts anti-tumor activity by inhibited the activity of CDK4, promoted the CDK4-PKM2-NRF2 complex formation in the CC cells.

2.
BMC Med Genomics ; 17(1): 136, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773541

RESUMEN

BACKGROUND: Bosma arhinia microphthalmia syndrome (BAMS; MIM603457) is a rare genetic disorder, predominantly autosomal dominant. It is a multi-system developmental disorder characterized by severe hypoplasia of the nose and eyes, and reproductive system defects. BAMS is extremely rare in the world and no cases have been reported in Chinese population so far. Pathogenic variants in the SMCHD1 gene (MIM614982) cause BAMS, while the underlying molecular mechanisms requires further investigation. CASE PRESENTATION: In this study, a Chinese girl who has suffered from congenital absence of nose and microphthalmia was enrolled and subsequently submitted to a comprehensive clinical and genetic evaluation. Whole-exome sequencing (WES) was employed to identify the genetic entity of thisgirl. A heterozygous pathogenic variant, NM_015295, c.1025G > C; p. (Trp342Ser) of SMCHD1 was identified. By performing very detailed physical and genetic examinations, the patient was diagnosed as BAMS. CONCLUSION: This report is the first description of a variant in SMCHD1 in a Chinese patient affected with BAMS.Our study not only furnished valuable genetic data for counseling of BAMS, but also confirmed the diagnosis of BAMS, which may help the management and prognosis for this patient.


Asunto(s)
Atresia de las Coanas , Proteínas Cromosómicas no Histona , Microftalmía , Humanos , Microftalmía/genética , Femenino , Proteínas Cromosómicas no Histona/genética , Atresia de las Coanas/genética , China , Pueblo Asiatico/genética , Nariz/anomalías , Secuenciación del Exoma , Pueblos del Este de Asia
3.
Dev Cell ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38810653

RESUMEN

Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.

4.
J Am Chem Soc ; 146(21): 14445-14452, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38739877

RESUMEN

Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.

5.
Cell Death Discov ; 10(1): 244, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773077

RESUMEN

TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.

6.
World J Gastrointest Oncol ; 16(4): 1453-1464, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660649

RESUMEN

BACKGROUND: Radiotherapy stands as a promising therapeutic modality for colorectal cancer (CRC); yet, the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission. AIM: To elucidate the role played by microRNA-298 (miR-298) in CRC radio-resistance. METHODS: To establish a radio-resistant CRC cell line, HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period. The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR, and protein expression determination was realized through Western blotting. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay. Radio-induced apoptosis was discerned through flow cytometry analysis. RESULTS: We observed a marked upregulation of miR-298 in radio-resistant CRC cells. MiR-298 emerged as a key determinant of cell survival following radiation exposure, as its overexpression led to a notable reduction in radiation-induced apoptosis. Intriguingly, miR-298 expression exhibited a strong correlation with CRC cell viability. Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A (DYRK1A) as miR-298's direct target. CONCLUSION: Taken together, our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation, thereby positioning miR-298 as a promising candidate for mitigating radio-resistance in CRC.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38662912

RESUMEN

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO3 (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

8.
Cardiovasc Res ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643484

RESUMEN

AIMS: The vascular aging process accelerated by type 2 diabetes mellitus (T2DM) is responsible for the elevated risk of associated cardiovascular diseases (CVDs). Metabolic disorder-induced immune senescence has been implicated in multi-organ/tissue damage. Herein, we sought to determine the role of immunosenescence in diabetic vascular aging and to investigate the underlying mechanisms. METHODS AND RESULTS: Aging hallmarks of the immune system appear prior to the vasculature in streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM mice or db/db mice. Transplantation of aged splenocytes or diabetic splenocytes into young mice triggered vascular senescence and injury compared to normal control splenocyte transfer. RNA-seq profile and validation in immune tissues revealed that the Toll-like receptor 4 (TLR4)- Nuclear factor-kappa B (NF-κB) -NLRP3 axis might be the mediator of diabetic premature immunosenescence. The absence of Nlrp3 attenuated immune senescence and vascular aging during T2DM. Importantly, senescent immune cells, particularly T cells, provoked perivascular adipose tissue (PVAT) dysfunction and alternations in its secretome, which in turn impair vascular biology. In addition, senescent immune cells may uniquely affect vasoconstriction via influencing PVAT. Lastly, rapamycin alleviated diabetic immune senescence and vascular aging, which may be partly due to NLRP3 signaling inhibition. CONCLUSION: These results indicated that NLRP3 inflammasome-mediated immunosenescence precedes and drives diabetic vascular aging. The contribution of senescent immune cells to vascular aging is a combined effect of their direct effects and induction of PVAT dysfunction, the latter of which can uniquely affect vasoconstriction. We further demonstrated that infiltration of senescent T cells in PVAT was increased and associated with PVAT secretome alterations. Our findings suggest that blocking the NLRP3 pathway may prevent early immunosenescence and thus mitigate diabetic vascular aging and damage, and targeting senescent T cells or PVAT might also be the potential therapeutic approach.

9.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645153

RESUMEN

Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results: We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions: Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.

10.
Cell Rep ; 43(5): 114131, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656870

RESUMEN

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Humanos , Animales , Macroautofagia , Ratones , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/metabolismo , Infecciones Neumocócicas/inmunología
11.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38607116

RESUMEN

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

12.
Phytomedicine ; 127: 155440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452691

RESUMEN

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Asunto(s)
Bufanólidos , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral
14.
BMC Med Inform Decis Mak ; 24(1): 66, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443858

RESUMEN

BACKGROUND: Among people with COPD, smartphone and wearable technology may provide an effective method to improve care at home by supporting, encouraging, and sustaining self-management. The current study was conducted to determine if patients with COPD will use a dedicated smartphone and smartwatch app to help manage their COPD and to determine the effects on their self-management. METHODS: We developed a COPD self-management application for smartphones and smartwatches. Participants were provided with the app on a smartphone and a smartwatch, as well as a cellular data plan and followed for 6 months. We measured usage of the different smartphone app functions. For the primary outcome, we examined the change in self-management from baseline to the end of follow up. Secondary outcomes include changes in self-efficacy, quality of life, and COPD disease control. RESULTS: Thirty-four patients were enrolled and followed. Mean age was 69.8 years, and half of the participants were women. The most used functions were recording steps through the smartwatch, entering a daily symptom questionnaire, checking oxygen saturation, and performing breathing exercises. There was no significant difference in the primary outcome of change in self-management after use of the app or in overall total scores of health-related quality of life, disease control or self-efficacy. CONCLUSION: We found older patients with COPD would engage with a COPD smartphone and smartwatch application, but this did not result in improved self-management. More research is needed to determine if a smartphone and smartwatch application can improve self-management in people with COPD. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03857061, First Posted February 27, 2019.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Automanejo , Dispositivos Electrónicos Vestibles , Anciano , Femenino , Humanos , Masculino , Estudios de Factibilidad , Proyectos Piloto , Enfermedad Pulmonar Obstructiva Crónica/terapia , Calidad de Vida
15.
Cell Rep ; 43(2): 113780, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363674

RESUMEN

Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Humanos , Animales , Femenino , Neoplasias de la Mama/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Autofagia/genética , Bases de Datos Factuales
16.
Free Radic Biol Med ; 212: 360-374, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38171407

RESUMEN

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Ferroptosis/genética , Línea Celular Tumoral , Microambiente Tumoral
17.
Autophagy ; 20(3): 525-540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37733921

RESUMEN

Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Asunto(s)
Neoplasias de la Mama , Macroautofagia , Humanos , Femenino , Autofagia , Linfocitos T CD8-positivos , Linfocitos T , Proteínas Serina-Treonina Quinasas
18.
Int J Biol Macromol ; 255: 128108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979769

RESUMEN

Forest trees face many abiotic stressors during their lifetime, including drought, heavy metals, high salinity, and chills, affecting their quality and yield. The RING-type ubiquitin ligase E3 is an invaluable component of the ubiquitin-proteasome system (UPS) and participates in plant growth and environmental interactions. Interestingly, only a few studies have explored the RING ZINC FINGER PROTEIN (RZFP) gene family. This study identified eight PtrRZFPs genes in the Populus genome, and their molecular features were analyzed. Gene structure analysis revealed that all PtrRZFPs genes contained >10 introns. Evolutionarily, the RZFPs were separated into four categories, and segmental replication events facilitated their amplification. Notably, many stress-related elements have been identified in the promoters of PtrRZFPs using Cis-acting element analysis. Moreover, some PtrRZFPs were significantly induced by drought and sorbitol, revealing their potential roles in regulating stress responses. Particularly, overexpression of the PtrRZFP1 gene in poplars conferred excellent drought tolerance; however, PtrRZFP1 knockdown plants were drought-sensitive. We identified the potential upstream transcription factors of PtrRZFPs and revealed the possible biological functions of RZFP1/4/7 in resisting osmotic and salt stress, laying the foundation for subsequent biological function studies and providing genetic resources for genetic engineering breeding for drought resistance in forest trees. This study offers crucial information for the further exploration of the functions of RZFPs in poplars.


Asunto(s)
Proteínas de Plantas , Populus , Proteínas de Plantas/química , Populus/genética , Populus/metabolismo , Zinc/metabolismo , Fitomejoramiento , Intrones , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Filogenia
19.
Organ Transplantation ; (6): 138-144, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005244

RESUMEN

With the maturity of kidney transplantation, introduction of new immunosuppressive drugs and improvement of immunosuppressive regimen, the short-term survival rate of kidney transplant recipients has been significantly improved, whereas the long-term survival rate has not been significantly elevated. Kidney transplant recipients may have the risk of renal graft loss. Clinical management after renal graft loss is complicated, including the adjustment of immunosuppressive drugs, management of renal graft and selection of subsequent renal replacement therapy. These management procedures directly affect clinical prognosis of patients with renal graft loss. Nevertheless, relevant guidelines or consensuses are still lacking. Clinical management of patients after renal graft loss highly depend upon clinicians’ experience. In this article, the adjustment of immunosuppressive drugs, management of renal graft and selection of subsequent renal replacement therapy were reviewed, aiming to provide reference for prolonging the survival and improving the quality of life of these patients.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013574

RESUMEN

Objective To investigate the seroprevalence of Toxoplasma gondii infections among patients with hematological diseases, so as to provide insights into improving the prognosis and quality of life among patients with hematological diseases. Methods A total of 240 patients with hematological diseases (including 170 patients with hematological tumors and 70 patients with non-tumor hematological diseases) admitted to The Affiliated Hospital of Putian University during the period from January 1, 2021 through October 10, 2023 and 500 healthy volunteers in the hospital during the same period were enrolled. Subjects’ demographics and serum samples were collected, and serum specific IgG and IgM antibodies against T. gondii were detected using the chemiluminescence assay, with any of a positive IgG or IgM antibody defined as a positive T. gondii infection. The seroprevalence of specific IgG and IgM antibodies against T. gondii was compared between patients with hematological diseases and healthy volunteers. Results The mean age (F = 2.034, P > 0.05) and gender distribution (χ2 = 0.462, P > 0.05) were comparable among patients with hematological tumors, patients with non-tumor hematological diseases and healthy volunteers, and there was no significant difference in the proportion of history of cat or dog contacts between patients with hematological diseases and healthy volunteers (χ2 = 0, P > 0.05). The seroprevalence of anti-T. gondii antibody was significantly higher among patients with hematological diseases than among healthy volunteers (15.8% vs. 0.6%; χ2 = 71.902, P < 0.01), and there was a significant difference in the seroprevalence of anti-T. gondii antibody among patients with hematological tumors (18.2%), patients with non-tumor hematological diseases (10.0%) and healthy volunteers (χ2 = 78.327, P < 0.01). The seroprevalence of anti-T. gondii antibody was significantly higher among patients with hematological tumors and non-tumor hematological diseases than among healthy volunteers (both P values < 0.05), while no significant difference was seen in the seroprevalence of anti-T. gondii antibody between patients with hematological tumors and non-tumor hematological diseases (P > 0.05). In addition, the proportion of history of cat or dog contacts was significantly higher among patients with hematological diseases that were positive for serum anti-T. gondii anti-body than among those negative for serum anti-T. gondii antibody (21.1% vs. 5.4%; χ2 = 8.653, P < 0.05). Conclusions There is a high seroprevalene rate of T. gondii infections among hematological diseases, which is significantly greater than that among healthy volunteers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...