Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794349

RESUMEN

L-ascorbic acid (AA), a potent antioxidant, is commonly used topically in the pharmaceutical and cosmetic fields. However, the incorporation of AA into topical formulations is difficult because of its highly unstable nature and relatively poor skin permeability. In this study, we propose an alternative strategy for improving the solubility and topical delivery of AA through its conversion to a therapeutic deep eutectic system (THEDES). AA and betaine (Bet)-based THEDESs were prepared at certain molar ratios and characterized using polarized optical microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Solubility tests showed that AA in the form of THEDES was readily soluble in various polyols (glycerin, 1,3-butylene glycol, dipropylene glycol, and 1,3-propanediol) at a high concentration (approximately 40%). Furthermore, compared to AA alone or the physical mixture of AA and Bet, AA-based THEDES significantly enhanced AA delivery through porcine skin. In an in vivo human study, THEDES-containing serum reduced the markers of aging and induced an even skin tone. These findings indicate the utility of AA and Bet-based THEDES as novel transdermal delivery systems for AA. Furthermore, our approach also showed good extension to developing gluconolactone, a well-known natural antioxidant, and Bet-based THEDES, showing potential application in transdermal delivery systems.

2.
Biomolecules ; 14(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540700

RESUMEN

Skin aging is a multifaceted biological phenomenon influenced by a combination of intrinsic or extrinsic factors. There is an increasing interest in anti-aging materials including components that improve skin wrinkles. Despite the availability of several such wrinkle-improving materials, the demand for ingredients with outstanding efficacy is increasing. Therefore, this study aimed to explore the mechanisms of wrinkle-related genes reported in previous genome-wide association studies (GWASs), identify materials that regulate these genes, and develop an effective anti-wrinkle formula containing the active ingredients that regulate the expression of these genes. We selected two candidate genes, EDAR and BNC2, that are reportedly related to periorbital wrinkles. We investigated their functions in the skin through in vitro experiments using human skin cell lines (keratinocytes and fibroblasts). Moreover, we identified ingredients that regulate the expression of these two genes and confirmed their efficacy through in vitro experiments using the skin cell lines. Finally, we developed a formula containing these ingredients and confirmed that it enhanced dermal collagen in the 3D skin and improved fine wrinkles under the eyes more effectively than retinol in humans, when applied for 8 weeks. Our results are significant and relevant, as we have discovered a special formula for wrinkle improvement with reliable efficacy that surpasses the efficacy of retinol and does not cause side-effects such as skin irritation.


Asunto(s)
Envejecimiento de la Piel , Vitamina A , Humanos , Vitamina A/farmacología , Envejecimiento de la Piel/genética , Estudio de Asociación del Genoma Completo , Piel , Expresión Génica , Receptor Edar , Proteínas de Unión al ADN
3.
Pharmaceutics ; 14(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36365229

RESUMEN

Retinoids, one of the most robust bioactive materials, have been widely used to improve various dermatological and pathological conditions. The body has an endogenous mechanism that modulates the exogenous retinoid above physiological concentrations, which limits the bioavailability or pharmacological efficacy of retinoids. Considering that most retinoids trigger extensive irritation in users, it is necessary to enhance the pharmacological efficacy of retinoids, thereby achieving a higher efficacy at a lower dosage. Here, we present approaches for enhancing the efficacy of retinol by enhancing retinoid-induced RAR gamma (RAR-γ) activity and inhibiting the hydroxylation of retinoic acid. Using both in vitro and ex vivo experiments, retinoid boosters were demonstrated to enhance pharmacological efficacy. A small pilot study was conducted to investigate the efficacy for improvement of facial wrinkles, whose results revealed that these boosters could enhance the pharmacological efficacy of topical applications of both retinol and retinoic acid for cosmetic use. These results promote not only a higher compliance among retinoids users, but also provide significant insights into the mechanisms underlying the action of retinoids.

4.
Int J Biol Macromol ; 222(Pt B): 2368-2374, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216105

RESUMEN

Lipases catalyze a wide range of industrially important reactions, including the transesterification of triglycerides with alcohols for biodiesel production, and the stabilization of lipases are critical to achieve their recycled uses. Here, nanoscale enzyme reactor (NER) of lipase from Rhizopus oryzae (LP) was prepared via a simple two-step process, comprising of enzyme adsorption into magnetically-separable mesoporous silica and follow-up crosslinking of adsorbed enzymes. In aqueous phase, the specific hydrolysis activity of NER-LP was 4.7 times lower than that of free LP. On the other hand, however, the specific transesterification activity of NER-LP (130.4 µmol/min/mg LP) in organic phase for biodiesel production was 50 times higher than that of free LP (2.6 µmol/min/mg LP). These results reveal that the enzyme crosslinking for the preparation of NER does not interfere with the interfacial activation of LP molecules, opening the lid of LP active site under an optimal hydrophobic environment provided by the combination of organic solvent and mesoporous silica. Magnetic separation and optimized washing protocol facilitated the recycled uses of NER-LP. Highly stable and active NER-LP in magnetically-separable mesoporous silica has demonstrated its great potentials as an environmentally-friendly nanobiocatalyst for various lipase applications, including plasticizers, biosurfactants, functional fatty acids, as well as recyclable biodiesel production.


Asunto(s)
Biocombustibles , Dióxido de Silicio , Lipasa/química , Esterificación , Hidrólisis , Enzimas Inmovilizadas/química
5.
Pharmaceutics ; 14(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36145506

RESUMEN

Microneedles have emerged as a novel transdermal delivery tool that enables the delivery of various products such as drugs, vaccines, or cosmetic ingredients. Although the demand for solid microneedles composed of biocompatible polymer is increasing, the manufacture of microneedles using poly-lactic acid (PLA) with rapid drug-releasing is yet to be established and the process is still in its infancy. Here, we propose a novel strategy for the fabrication of PLA solid microneedles which enable a drug to be burst-released based on a solvent-casting process. This approach offers extreme simplicity, broad geometric capability, cost-effectiveness, and scalability based on high fidelity-replicas. It was verified that microneedles of various heights (250-500 µm) could be fabricated with appropriate mechanical strength to penetrate the stratum corneum layer of skin. By adding sugar in the composition of PLA microneedle, it was observed that both hydrophilic and hydrophobic drugs can be rapidly released within 30 min. Our burst drug-releasing PLA microneedle having both characteristics of solid microneedle and soluble microneedle and its fabrication approach based on solvent-casting will contribute to getting microneedle technology close to commercialization and beyond existing technical limitations.

6.
Pharmaceutics ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959288

RESUMEN

Retinol, one of the most powerful cosmetic materials for anti-aging supported by a solid scientific background, exhibits a wide range of type and severity of irritation while showing limited user compliance. The lack of understanding of the mechanism of retinol-induced irritation has been the main hurdle in the development of anti-irritation strategies. Here, we identified 30 genetic markers related to the susceptibility to retinol-induced irritation in the Korean population. Based on the genetic analysis, a novel formula against retinol-induced irritation was developed, which mitigated the molecular pathogenesis-as indicated by the genetic markers-of the retinol-induced irritation. In human tests, this formula effectively decreased retinol-induced irritation. Furthermore, a polygenic risk score model for irritation was constructed and validated. Our comprehensive approach for the analysis of retinol-induced irritation will not only aid the development of anti-irritation strategies to ensure higher user compliance but also contribute to improving the current knowledge about the biological effects of retinoids.

7.
Polymers (Basel) ; 13(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800335

RESUMEN

Retinol has been widely used as an anti-wrinkle active ingredient in cosmetic fields. However, the oxidation of retinol by air was one of the critical problems for application in the skincare field. In this study, Retinol-loaded lipid nanocarriers were prepared via the vacuum emulsification method to increase the stability of retinol vulnerable to air and optimized encapsulation conditions and to increase the penetration efficiency into skin. Optimizing the components of lipid nanocarriers, gradients of carbon chain C8-22 using various lipid species which made the amorphous structure and enough spaces to load retinol inside the capsules were estimated from the lower enthalpy change and peak shift in DSC analysis. The vacuum-assisted lipid nanocarriers (VLN) could help suppress oxidation, which could have advantages to increase the thermal stability of retinol. The retinol-loaded VLN (VLN-ROL) had narrow size distribution under 0.3 PDI value, under 200 nm scaled particle size, and fully negative surface charge of about -50 mV for the electrostatic repulsion to avoid aggregation phenomenon among the lipid nanoparticles. It maintained 90% or more retinol concentration after 4 weeks of storage at 25, 40 and 50 °C and kept stable. The VLN-ROL-containing cream showed improved penetration efficiency applied to porcine skins compared to the commercial retinol 10S from BASF. The total amount of retinol into the skin of VLN-ROL (0.1% of retinol) was enhanced by about 2.2-fold (2.86 ± 0.23 µg) higher than that in 0.1% of bare retinol (about 1.29 ± 0.09 µg). In addition, applied on a 3D Human skin model, the epidermal thickness and the relative percentage of dermal collagen area effectively increased compared to the control and retinol, respectively. Additionally, the level of secreted IL-1α was lower and epidermal damage was weaker than commercial product A. This retinol-loaded lipid nanocarrier could be a potentially superior material for cosmetics and biomedical research.

8.
Polymers (Basel) ; 12(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825232

RESUMEN

Although dissolving microneedles have garnered considerable attention as transdermal delivery tools, insufficient drug loading remains a challenge owing to their small dimension. Herein, we report a one-step process of synthesizing semi-dissolving microneedle (SDMN) patches that enable effective transdermal drug delivery without loading drugs themselves by introducing TEMPO-oxidized bacterial cellulose nanofibers (TOBCNs), which are well dispersed, while retaining their unique properties in the aqueous phase. The SDMN patch fabricated by the micro-molding of a TOBCN/hydrophilic biopolymer mixture had a two-layer structure comprising a water-soluble needle layer and a TOBCN-containing insoluble backing layer. Moreover, the SDMN patch, which had a hole in the backing layer where TOBCNs are distributed uniformly, could offer novel advantages for the delivery of large quantities of active ingredients. In vitro permeation analysis confirmed that TOBCNs with high water absorption capacity could serve as drug reservoirs. Upon SDMN insertion and the application of drug aqueous solution through the drug inlet hole, the TOBCNs rapidly absorbed the solution and supplied it to the needle layer. Simultaneously, the needle layer dissolved in body fluids and the drug solution to form micro-channels, which enabled the delivery of larger quantities of drugs to the skin compared to that enabled by solution application alone.

9.
Environ Sci Technol ; 54(2): 1223-1231, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31899628

RESUMEN

Carbonic anhydrases convert CO2 to bicarbonate at a high turnover rate up to 106 s-1, but their actual applications in CO2 conversion processes are hampered by their poor stability. This study reports highly loaded and stabilized bovine carbonic anhydrase (bCA) upon being immobilized onto electrospun polymer nanofibers in the form of enzyme precipitate coating (EPC). The EPC protocol, consisting of enzyme covalent attachment, precipitation, and cross-linking, maintained 65.3% of initial activity even after being incubated in aqueous solution at room temperature under shaking at 200 rpm for 868 days. EPC also showed strong resistance to the treatment of the metal chelation agent, ethylenediaminetetraacetic acid, and molecular dynamic simulation was carried out to elucidate the prevention of metal leaching from the active site of bCA upon being cross-linked in the form of EPC. Highly stable EPC with high bCA loading was employed for the conversion of bubbling CO2 to bicarbonate, and the bicarbonate solution was utilized as a carbon source for expedited microalgae growth in a separate bioreactor. The addition of EPC in the bubbling CO2 reactor resulted in 134 and 231% accelerated microalgae growths compared to the controls with and without 25 mM sodium bicarbonate, respectively. EPC with high enzyme loading and unprecedentedly successful stabilization of enzyme stability has a great potential to be used for the development of various enzyme-mediated CO2 conversion and utilization technologies.


Asunto(s)
Anhidrasas Carbónicas , Microalgas , Nanofibras , Animales , Bicarbonatos , Dióxido de Carbono , Bovinos , Enzimas Inmovilizadas
10.
Polymers (Basel) ; 11(6)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31197111

RESUMEN

In the skincare field, water-dispersed bacterial cellulose nanofibers synthesized via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst are promising bio-based polymers for engineered green materials because of their unique properties when applied to the surface of the skin, such as a high tensile strength, high water-holding capacity, and ability to block harmful substances. However, the conventional method of synthesizing TEMPO-oxidized bacterial cellulose nanofibers (TOCNs) is difficult to scale due to limitations in the centrifuge equipment when treating large amounts of reactant. To address this, we propose a one-pot TOCN synthesis method involving TEMPO immobilized on silica beads that employs simple filtration instead of centrifugation after the oxidation reaction. A comparison of the structural and physical properties of the TOCNs obtained via the proposed and conventional methods found similar properties in each. Therefore, it is anticipated that due to its simplicity, efficiency, and ease of use, the proposed one-pot synthesis method will be employed in production scenarios to prepare production quantities of bio-based polymer nanofibers in various potential industrial applications in the fields of skincare and biomedical research.

11.
Environ Sci Technol ; 49(7): 4466-72, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25815899

RESUMEN

We developed a process for one-pot CO2 conversion and utilization based on simple conversion of CO2 to bicarbonate at ambient temperature with no energy input, by using the cross-linking-based composites of carboxylated polyaniline nanofibers (cPANFs) and carbonic anhydrase. Carbonic anhydrase was immobilized on cPANFs via the approach of magnetically separable enzyme precipitate coatings (Mag-EPC), which consists of covalent enzyme attachment, enzyme precipitation, and cross-linking with amine-functionalized magnetic nanoparticles. Mag-EPC showed a half-life of 236 days under shaking, even resistance to 70% ethanol sterilization, and recyclability via facile magnetic separation. For one-pot CO2 conversion and utilization, Mag-EPC was used to accelerate the growth of microalga by supplying bicarbonate from CO2, representing 1.8-fold increase of cell concentration when compared to the control sample. After two repeated uses via simple magnetic separation, the cell concentration with Mag-EPC was maintained as high as the first cycle. This one-pot CO2 conversion and utilization is an alternative as well as complementary process to adsorption-based CO2 capture and storage as an environmentally friendly approach, demanding no energy input based on the effective action of the stabilized enzyme system.


Asunto(s)
Dióxido de Carbono/metabolismo , Microalgas/crecimiento & desarrollo , Adsorción , Compuestos de Anilina/química , Bicarbonatos/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Reactivos de Enlaces Cruzados/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Semivida , Magnetismo , Microalgas/metabolismo , Nanofibras/química , Temperatura
12.
Nano Lett ; 12(8): 4018-24, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22784189

RESUMEN

Electrospun polymer nanofibers with entrapped magnetic nanoparticles (magnetic NP-NF) represent a novel scaffold substrate that can be functionalized for single-step isolation and activation of specific lymphocyte subsets. Using a surface-embedded T cell receptor ligand/trigger (anti-CD3 monoclonal antibody), we demonstrate, as proof of principle, the use of magnetic NP-NF to specifically isolate, enrich, and activate CD3(+) T cells from a heterogeneous cell mixture, leading to preferential expansion of CD8(+)CD3(+) T cells. The large surface area, adjustable antibody density, and embedded paramagnetic properties of the NP-NF permitted enhanced activation and expansion; its use represents a strategy that is amenable to an efficient selection process for adoptive cellular therapy as well as for the isolation of other cellular subsets for downstream translational applications.


Asunto(s)
Alcoholes , Complejo CD3/metabolismo , Separación Celular/métodos , Activación de Linfocitos , Nanopartículas de Magnetita/química , Nanofibras/química , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Complejo CD3/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
13.
Bioprocess Biosyst Eng ; 34(7): 841-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21409450

RESUMEN

Lipase (LP) was immobilized on electrospun and ethanol-dispersed polystyrene-poly(styrene-co-maleic anhydride) (PS-PSMA) nanofibers (EtOH-NF) in the form of enzyme precipitate coatings (EPCs). LP precipitate coatings (EPCs-LP) were prepared in a three-step process, consisting of covalent attachment, LP precipitation, and crosslinking of precipitated LPs onto the covalently attached LPs via glutaraldehyde treatment. The LP precipitation was performed by adding various concentrations of ammonium sulfate (20-50%, w/v). EPCs-LP improved the LP activity and stability when compared to covalently attached LPs (CA-LP) and the enzyme coatings of LPs (EC-LP) without the LP precipitation. For example, the use of 40% (w/v) ammonium sulfate resulted in EPC40-LP with the highest activity, which was 4.0 and 3.6 times higher than those of CA-LP and EC-LP, respectively. After 165-day incubation under rigorous shaking at 200 rpm, the residual activities of EPC50-LP were 0.5 µM/min mg of EtOH-NF, representing 113 and 75 times higher than those of CA-LP and EC-LP, respectively. When LP was partially purified via a simple ammonium sulfate precipitation and dialysis, both activities and stabilities of EC-LP and EPC-LP could be marginally improved. It is anticipated that the improved LP activity and stability in the form of EPCs would allow for their potential applications in various bioconversion processes such as biodiesel production and ibuprofen resolution.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Nanofibras/química , Polímeros/química , Precipitación Química , Materiales Biocompatibles Revestidos/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Etanol/química , Glutaral/química , Lipasa/química , Maleatos/química , Poliestirenos/química
14.
Biotechnol Bioeng ; 107(6): 917-23, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20683853

RESUMEN

An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 and 50°C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 1.42 and 231 h at 40°C, respectively. The improved stability of EC-TR can be explained by covalent linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40°C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of 1 week. In the same condition, CA-TR showed poor performance from the beginning and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Nanofibras/química , Polímeros/química , Tripsina/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Semivida , Unión Proteica , Temperatura , Tripsina/química
15.
Anal Chem ; 82(18): 7828-34, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20718428

RESUMEN

The construction of a trypsin column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coatings, which were prepared by a two-step process of covalent attachment and enzyme cross-linking. In a comparative study with the trypsin coatings on as-spun and nondispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than 20 min. By applying the alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the trypsin coatings were improved, yielding more complete and reproducible digestions. Regardless of alcohol dispersion or not, trypsin coatings showed better digestion performance and improved performance stability under recycled uses than covalently attached trypsin, in-solution digestion, and commercial trypsin beads. The combination of highly stable trypsin coatings and alcohol dispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for online and automated protein digestion.


Asunto(s)
Alcoholes/química , Electricidad , Nanofibras/química , Polímeros/química , Proteínas/metabolismo , Tripsina/química , Tripsina/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Cromatografía Liquida , Etanol/química , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Fosfopiruvato Hidratasa/análisis , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/metabolismo , Proteínas/análisis , Proteínas/química , Proteómica , Espectrometría de Masas en Tándem , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...