Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319651

RESUMEN

The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only one was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.

2.
Front Plant Sci ; 14: 1252564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780492

RESUMEN

Hybrid vigor or heterosis has been widely applied in agriculture and extensively studied using genetic and gene expression approaches. However, the biochemical mechanism underlying heterosis remains elusive. One theory suggests that a decrease in protein aggregation may occur in hybrids due to the presence of protein variants between parental alleles, but it has not been experimentally tested. Here, we report comparative analysis of soluble and insoluble proteomes in Arabidopsis intraspecific and interspecific hybrids or allotetraploids formed between A. thaliana and A. arenosa. Both allotetraploids and intraspecific hybrids displayed nonadditive expression (unequal to the sum of the two parents) of the proteins, most of which were involved in biotic and abiotic stress responses. In the allotetraploids, homoeolog-expression bias was not observed among all proteins examined but accounted for 17-20% of the nonadditively expressed proteins, consistent with the transcriptome results. Among expression-biased homoeologs, there were more A. thaliana-biased than A. arenosa-biased homoeologs. Analysis of the insoluble and soluble proteomes revealed more soluble proteins in the hybrids than their parents but not in the allotetraploids. Most proteins in ribosomal biosynthesis and in the thylakoid lumen, membrane, and stroma were in the soluble fractions, indicating a role of protein stability in photosynthetic activities for promoting growth. Thus, nonadditive expression of stress-responsive proteins and increased solubility of photosynthetic proteins may contribute to heterosis in Arabidopsis hybrids and allotetraploids and possibly hybrid crops.

3.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745544

RESUMEN

The parent-of-origin effect on seed size can result from imprinting or a combinational effect between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding effects, we generated cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in the Arabidopsis thaliana ecotypes Col-0 and C24. These CNS lines differ only in the nuclear genome (imprinting) or in the cytoplasm. The CNS reciprocal hybrids with the same cytoplasm display a ~20% seed size difference as observed in the conventional hybrids. However, seed size is similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection have identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes are involved in pectin catabolism and cell wall modification in the endosperm. HDG9, an epiallele and one of 11 cross-specific imprinted genes, controls seed size. In the embryo, a handful of imprinted genes is found in the CNS hybrids but only one is expressed higher in the embryo than endosperm. AT4G13495 encodes a long-noncoding RNA (lncRNA), but no obvious seed phenotype is observed in the lncRNA knockout lines. NRPD1, encoding the largest subunit of RNA Pol IV, is involved in the biogenesis of small interfering RNAs. Seed size and embryo is larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross. In spite of limited ecotypes tested, these results suggest potential roles of imprinting and NRPD1-mediated small RNA pathway in seed size variation in hybrids.

4.
Proc Natl Acad Sci U S A ; 119(44): e2214565119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282917

RESUMEN

Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light-absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1). Loss-of-function swap1-1 mutant is hyposensitive to red light and exhibits a day length-independent early flowering phenotype. SWAP1 physically interacts with two other splicing factors, (SFPS) SPLICING FACTOR FOR PHYTOCHROME SIGNALING and (RRC1) REDUCED RED LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 in a light-independent manner and forms a ternary complex. In addition, SWAP1 physically interacts with photoactivated phyB and colocalizes with nuclear phyB photobodies. Phenotypic analyses show that the swap1sfps, swap1rrc1, and sfpsrrc1 double mutants display hypocotyl lengths similar to that of the respective single mutants under red light, suggesting that they function in the same genetic pathway. The swap1sfps double and swap1sfpsrrc1 triple mutants display pleiotropic phenotypes, including sterility at the adult stage. Deep RNA sequencing (RNA-seq) analyses show that SWAP1 regulates the gene expression and pre-messenger RNA (mRNA) alternative splicing of a large number of genes, including those involved in plant responses to light signaling. A comparative analysis of alternative splicing among single, double, and triple mutants showed that all three splicing factors coordinately regulate the alternative splicing of a subset of genes. Our study uncovered the function of a splicing factor that modulates light-regulated alternative splicing by interacting with photoactivated phyB and other splicing factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Luz , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
5.
PLoS Biol ; 18(3): e3000668, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226010

RESUMEN

Science communication and outreach are essential for training the next generation of scientists and raising public awareness for science. Providing effective science, technology, engineering, and mathematics (STEM) educational outreach to students in classrooms is challenging because of the need to form partnerships with teachers, the time commitment required for the presenting scientist, and the limited class time allotted for presentations. In our Present Your Ph.D. Thesis to a 12-Year Old outreach project, our novel solution to this problem is hosting a youth science workshop (YSW) on our university campus. The YSW is an interpersonal science communication and outreach experience in which graduate students from diverse scientific disciplines introduce middle and high school students to their cutting-edge research and mentor them to develop a white-board presentation to communicate the research to the workshop audience. Our assessment of the YSW indicated that participating young students expressed significantly more positive attitudes toward science and increased motivation to work in a STEM career after attending the workshop. Qualitative follow-up interviews with participating graduate students' show that even with minimal time commitment, an impactful science communication training experience can be achieved. The YSW is a low-cost, high-reward educational outreach event amenable to all disciplines of science. It enhances interest and support of basic science research while providing opportunities for graduate students to engage with the public, improve their science communication skills, and enhance public understanding of science. This YSW model can be easily implemented at other higher education institutions to globally enhance science outreach initiatives.


Asunto(s)
Relaciones Comunidad-Institución , Tutoría/métodos , Ciencia/educación , Estudiantes , Comunicación , Humanos , Tutoría/estadística & datos numéricos , Modelos Educacionales , Motivación , Evaluación de Programas y Proyectos de Salud , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , Encuestas y Cuestionarios
6.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32191846

RESUMEN

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas/fisiología , Espectrometría de Masas/métodos , Plantas/genética , Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos
7.
Elife ; 42015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25815584

RESUMEN

During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Intercambio Genético , Meiosis/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Ecotipo , Fluorescencia , Variación Genética , Genotipo , Heterocigoto , Homocigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...