Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Res ; 25(1): 198, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720340

RESUMEN

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Asunto(s)
Arginasa , Autofagia , Progresión de la Enfermedad , Neoplasias Pulmonares , Macrófagos , Transducción de Señal , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/microbiología , Humanos , Ratones , Autofagia/fisiología , Arginasa/metabolismo , Transducción de Señal/fisiología , Macrófagos/metabolismo , Macrófagos/patología , Tuberculosis Pleural/patología , Tuberculosis Pleural/metabolismo , Células A549 , Ratones Endogámicos C57BL , Derrame Pleural/metabolismo , Derrame Pleural/patología , Polaridad Celular/fisiología
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612517

RESUMEN

Multiple animal models of migraine have been used to develop new therapies. Understanding the transition from episodic (EM) to chronic migraine (CM) is crucial. We established models mimicking EM and CM pain and assessed neuropathological differences. EM and CM models were induced with single NTG or multiple injections over 9 days. Mechanical hypersensitivity was assessed. Immunofluorescence utilized c-Fos, NeuN, and Iba1. Proinflammatory and anti-inflammatory markers were analyzed. Neuropeptides (CGRP, VIP, PACAP, and substance P) were assessed. Mechanical thresholds were similar. Notable neuropathological distinctions were observed in Sp5C and ACC. ACC showed increased c-Fos and NeuN expression in CM (p < 0.001) and unchanged in EM. Sp5C had higher c-Fos and NeuN expression in EM (p < 0.001). Iba1 was upregulated in Sp5C of EM and ACC of CM (p < 0.001). Proinflammatory markers were strongly expressed in Sp5C of EM and ACC of CM. CGRP expression was elevated in both regions and was higher in CM. VIP exhibited higher levels in the Sp5C of EM and ACC of CM, whereas PACAP and substance P were expressed in the Sp5C in both models. Despite similar thresholds, distinctive neuropathological differences in Sp5C and ACC between EM and CM models suggest a role in the EM to CM transformation.


Asunto(s)
Dolor Crónico , Trastornos Migrañosos , Animales , Ratones , Nitroglicerina/farmacología , Péptido Relacionado con Gen de Calcitonina/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Sustancia P , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/genética , Modelos Animales de Enfermedad
3.
Biomater Res ; 28: 0002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327616

RESUMEN

Background: Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues. Methods: We engineered a tumor-specific bifunctional NIR bioprobe designed to precisely target HNSCC and induce phototheranosis using bioconjugation of a cyclic arginine-glycine-aspartic acid (cRGD) motif and zwitterionic polymethine NIR fluorophore. The cytotoxic effects of cRGD-ZW800-PEG were measured by assessing heat and reactive oxygen species (ROS) generation upon an 808-nm laser irradiation. We then determined the in vivo efficacy of cRGD-ZW800-PEG in the FaDu xenograft mouse model of HNSCC, as well as its biodistribution and clearance, using a customized portable NIR imaging system. Results: Real-time NIR imaging revealed that intravenously administered cRGD-ZW800-PEG targeted tumors rapidly within 4 h postintravenous injection in tumor-bearing mice. Upon laser irradiation, cRGD-ZW800-PEG produced ROS and heat simultaneously and exhibited synergistic photothermal and photodynamic effects on the tumoral tissue without affecting the neighboring healthy tissues. Importantly, all unbound bioprobes were cleared through renal excretion. Conclusions: By harnessing phototheranosis in combination with tailored tumor selectivity, our targeted bioprobe ushers in a promising paradigm in cancer treatment. It promises safer and more efficacious therapeutic avenues against cancer, marking a substantial advancement in the field.

4.
Sci Rep ; 13(1): 13753, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612316

RESUMEN

We aimed to investigate whether mitochondrial dysfunction in extracellular cerebrospinal fluid (CSF), which is associated with autophagy and mitophagy, might be involved in neurological outcomes in adult patients with hemorrhagic moyamoya disease (MMD) whose pathogenesis related to poor outcomes is not well-known. CSF samples were collected from 43 adult MMD patients and analyzed according to outcomes at 3 months. Fluorescence-activated cell sorter analysis (FACS) and the JC-1 red/green ratio were used to assess mitochondrial cells and intact mitochondrial membrane potential (MMP). We performed quantitative real-time polymerase chain reaction and Western blotting analyses of autophagy and mitophagy-related markers, including HIF1α, ATG5, pBECN1, BECN1, BAX, BNIP3L, DAPK1, and PINK1. Finally, FACS analysis with specific fluorescence-conjugated antibodies was performed to evaluate the potential cellular origin of CSF mitochondrial cells. Twenty-seven females (62.8%) with a mean age of 47.4 ± 9.7 years were included in the study. Among 43 patients with hemorrhagic MMD, 23 (53.5%) had poor outcomes. The difference in MMP was evident between the two groups (2.4 ± 0.2 in patients with poor outcome vs. 3.5 ± 0.4 in patients with good outcome; p = 0.02). A significantly higher expression (2-ΔCt) of HIF1α, ATG5, DAPK1 followed by BAX and BNIP3L mRNA and protein was also observed in poor-outcome patients compared to those with good outcomes. Higher percentage of vWF-positive mitochondria, suggesting endothelial cell origins, was observed in patients with good outcome compared with those with poor outcome (25.0 ± 1.4% in patients with good outcome vs. 17.5 ± 1.5% in those with poor outcome; p < 0.01). We observed the association between increased mitochondrial dysfunction concomitant with autophagy and mitophagy in CSF cells and neurological outcomes in adult patients with hemorrhagic MMD. Further prospective multicenter studies are needed to determine whether it has a diagnostic value for risk prediction.


Asunto(s)
Mitofagia , Enfermedad de Moyamoya , Adulto , Femenino , Humanos , Persona de Mediana Edad , Anticuerpos , Autofagia , Proteína X Asociada a bcl-2 , Mitocondrias , Masculino
5.
Acta Neurochir (Wien) ; 165(8): 2201-2210, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380907

RESUMEN

BACKGROUND: We aimed to investigate the effects of oxiracetam on cognitive impairment in the early phase of traumatic brain injury (TBI), for which no specific treatment is currently available. METHODS: The in vitro study used a cell injury controller to damage SH-SY5Y cells and evaluate the effect of oxiracetam at a dosage of 100 nM. The in vivo study used a stereotaxic impactor to induce a TBI model in C57BL/6 J mice and analyzed immunohistochemical changes and cognitive function after an intraperitoneal injection of oxiracetam (30 mg/kg/day) for 5 days. The number of mice used in this study was 60. They were divided into three groups (sham, TBI, and TBI with oxiracetam treatment) (20 mice in each group). RESULTS: The in vitro study showed that oxiracetam treatment resulted in increased superoxide dismutase (SOD)1 and SOD2 mRNA expression. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and interleukin (IL)-1 ß were decreased after oxiracetam treatment, along with decreases in intracellular reactive oxygen species production and apoptotic effects. TBI mice treated with oxiracetam exhibited the loss of fewer cortical damaged lesions, less brain edema, and fewer Fluoro-Jade B (FJB)-positive and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)-positive cells compared to those without oxiracetam treatment. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and IL-1ß were decreased significantly after oxiracetam treatment. These inflammation-related markers, which colocalized with Iba-1-positive or GFAP-positive cells after TBI, were also decreased after oxiracetam treatment. TBI mice treated with oxiracetam had a smaller decrease in preference and more latency time than those not treated with oxiracetam, suggesting the amelioration of impaired cognitive impairment. CONCLUSIONS: Oxiracetam may be helpful in restoring cognitive impairment by ameliorating neuroinflammation in the early phase of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Neuroblastoma , Ratas , Ratones , Humanos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Ciclooxigenasa 2 , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Antiinflamatorios/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/uso terapéutico , Caspasas/uso terapéutico , Modelos Animales de Enfermedad
6.
Acta Biomater ; 167: 335-347, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356785

RESUMEN

OBJECTIVE: There are no effective clinically applicable treatments for neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated the therapeutic effect of a new delivery method of mouse neural stem cell (mNSC) spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after mild TBI. METHODS: mNSCs were isolated from the subventricular zone and subgranular zone by a hydrogel-based culture system. GFP-transduced mNSCs were generated into spheroids and wrapped into a sheet for transplantation. Male C57BL/6J mice were randomly divided into four groups: sham operation, TBI, TBI with mNSC spheroids, and TBI with mNSC spheroid sheet transplantation covering the damaged cortex. Histopathological and immunohistochemical features and cognitive function were evaluated 7, 14, and 28 days after transplantation following TBI. RESULTS: Hydrogel-based culture systems and mNSC isolation were successfully established from the adult mice. Essential transcription factors for NSCs, such as SOX2, PAX6, Olig2, nestin, and doublecortin (DCX), were highly expressed in the mNSCs. A transplanted hydrogel-based mNSC spheroid sheet showed good engraftment and survival ability, differentiated into TUJ1-positive neurons, promoted angiogenesis, and reduced neuronal degeneration. Also, TBI mice treated with mNSC spheroid sheet transplantation exhibited a significantly increased preference for a new object, suggesting improved cognitive function compared to the mNSC spheroids or no treatment groups. CONCLUSION: Transplantation with a hydrogel-based mNSC spheroid sheet showed engraftment, migration, and stability of delivered cells in a hostile microenvironment after TBI, resulting in improved cognitive function via reconstruction of the damaged cortex. STATEMENT OF SIGNIFICANCE: This study presents the therapeutic effect of a new delivery method of mouse neural stem cells spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after traumatic brain injury. Collagen/fibrin hydrogel allowed long-term survival and migratory ability of NSCs spheroids. Furthermore, transplanted hydrogel-based mNSCs spheroids sheet showed good engraftment, migration, and stability of delivered cells in a hostile microenvironment, resulting in reconstruction of the damaged cortex and improved cognitive function after TBI. Therefore, we suggest that a hydrogel-based mNSCs spheroids sheet could help to improve cognitive impairment after TBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Masculino , Ratones , Animales , Conmoción Encefálica/patología , Hidrogeles/farmacología , Ratones Endogámicos C57BL , Neuronas , Lesiones Traumáticas del Encéfalo/patología
7.
Life (Basel) ; 13(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37109411

RESUMEN

We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.

8.
Bioeng Transl Med ; 8(2): e10423, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925698

RESUMEN

Herein, we report the first study to create a three-dimensional (3D) bioprinted artificial larynx for whole-laryngeal replacement. Our 3D bio-printed larynx was generated using extrusion-based 3D bioprinter with rabbit's chondrocyte-laden gelatin methacryloyl (GelMA)/glycidyl-methacrylated hyaluronic acid (GMHA) hybrid bioink. We used a polycaprolactone (PCL) outer framework incorporated with pores to achieve the structural strength of printed constructs, as well as to provide a suitable microenvironment to support printed cells. Notably, we established a novel fluidics supply (FS) system that simultaneously supplies basal medium together with a 3D bioprinting process, thereby improving cell survival during the printing process. Our results showed that the FS system enhanced post-printing cell viability, which enabled the generation of a large-scale cell-laden artificial laryngeal framework. Additionally, the incorporation of the PCL outer framework with pores and inner hydrogel provides structural stability and sufficient nutrient/oxygen transport. An animal study confirmed that the transplanted 3D bio-larynx successfully maintained the airway. With further development, our new strategy holds great potential for fabricating human-scale larynxes with in vivo-like biological functions for laryngectomy patients.

9.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674449

RESUMEN

We hypothesized that auditory stimulation could reduce the progression of Alzheimer's disease (AD), and that audiovisual stimulation could have additional effects through multisensory integration. We exposed 12 month old Apoetm1.1(APOE*4)Adiuj mice (a mouse model of sporadic AD) to auditory (A) or audiovisual stimulation (AV) at 40 Hz for 14 days in a soundproof chamber system (no stimulation, N). Behavioral tests were performed before and after each session, and their brain tissues were assessed for amyloid-beta expression and apoptotic cell death, after 14 days. Furthermore, brain levels of acetylcholine and apoptosis-related proteins were analyzed. In the Y-maze test, the percentage relative alternation was significantly higher in group A than in group N mice. Amyloid-beta and TUNEL positivity in the hippocampal CA3 region was significantly lower in group A and group AV mice than in group N mice (p < 0.05). Acetylcholine levels were significantly higher in group A and group AV mice than in group N mice (p < 0.05). Compared to group N mice, expression of the proapoptotic proteins Bax and caspase-3 was lower in group A, and expression of the antiapoptotic protein Bcl-2 was higher in group AV. In a mouse model of early-stage sporadic AD, auditory or audiovisual stimulation improved cognitive performance and neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Apolipoproteína E4 , Acetilcolina , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Apolipoproteínas E , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
10.
Biochem Biophys Res Commun ; 635: 169-178, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36274367

RESUMEN

OBJECTIVE: There are no effective treatments for relieving neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated therapeutic efficacy of human embryonic stem cell-derived cerebral organoids (hCOs) in a mild TBI model, in terms of repair of damaged cortical regions, neurogenesis, and improved cognitive function. METHODS: Male C57BL/6 J mice were randomly divided into sham-operated, mild TBI, and mild TBI with hCO groups. hCOs cultured at 8 weeks were used for transplantation. Mice were sacrificed at 7 and 14 days after transplantation followed by immunofluorescence staining, cytokine profile microarray, and novel object recognition test. RESULTS: 8W-hCOs transplantation significantly reduced neuronal cell death, recovered microvessel density, and promoted neurogenesis in the ipsilateral subventricular zone and dentate gyrus of hippocampus after mild TBI. In addition, increased angiogenesis into the engrafted hCOs was observed. Microarray results of hCOs revealed neuronal differentiation potential and higher expression of early brain development proteins associated with neurogenesis, angiogenesis and extracellular matrix remodeling. Ultimately, 8W-hCO transplantation resulted in reconstruction of damaged cortex and improvement in cognitive function after mild TBI. CONCLUSION: hCO transplantation may be feasible for treating mild TBI-related neuronal dysfunction via reconstruction of damaged cortex and neurogenesis in the hippocampus.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Células Madre Embrionarias Humanas , Animales , Humanos , Masculino , Ratones , Conmoción Encefálica/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Organoides
11.
J Korean Neurosurg Soc ; 65(5): 680-687, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35574585

RESUMEN

OBJECTIVE: The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. METHODS: Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. RESULTS: Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-ß were observed after mild TBI. The IL-6, TNF-α, and TGF-ß levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. CONCLUSION: Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

12.
In Vivo ; 36(3): 1195-1202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478119

RESUMEN

BACKGROUND/AIM: Allicin has been known to improve wound healing via antimicrobial and anti-inflammatory properties. The aim of this study was to evaluate whether an allicin-coated tracheal tube can prevent tracheal stenosis through improving wound healing after tracheal injury. MATERIALS AND METHODS: Allicin-coated silicone tracheal tube (t-tube) was prepared by the polydopamine-mediated coating method. Tracheal mucosa was injured, and an allicin-coated t-tube was placed into the trachea to evaluate mucosal changes until designated time point. Anti-inflammatory, anti-bacterial and cytotoxic effects of allicin were also investigated in in vitro. RESULTS: Allicin- coated silicone was not cytotoxic, and it showed anti-inflammatory and anti-bacterial effects in in vitro analysis. The use of allicin-coated t-tube in a rabbit model showed favorable mucosal healing with significant decrease of proinflammatory cytokines compared to the non-coated tube group. The allicin-coated tube showed obvious decreased number of cocci-shaped bacterial attached to the tube surface. From the histological point of view, the allicin- coated tube showed faster regeneration of the normal respiratory epithelial structure compared to the non-coated group. CONCLUSION: Allicin-coated t-tube showed anti-inflammatory and anti-bacterial effects on injured tracheal mucosa. We suggest that allicin-coated t-tube can be used for promoting physiological wound healing to prevent laryngotracheal stenosis.


Asunto(s)
Tráquea , Estenosis Traqueal , Animales , Antiinflamatorios/farmacología , Bacterias , Disulfuros , Membrana Mucosa , Conejos , Ácidos Sulfínicos/farmacología , Estenosis Traqueal/prevención & control
13.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328424

RESUMEN

Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3' UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette-Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.


Asunto(s)
MicroARNs , Mycobacterium tuberculosis , Tuberculosis , Animales , Vacuna BCG , Transición Epitelial-Mesenquimal/genética , Fibrosis , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Mycobacterium tuberculosis/metabolismo , NADPH Oxidasa 4/genética , Proteínas Nucleares/metabolismo
14.
J Korean Neurosurg Soc ; 65(2): 196-203, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35108773

RESUMEN

OBJECTIVE: To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI). METHODS: In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were analyzed. RESULTS: Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group of SH-SY5Y cells treated with Dulbecco's phosphate-buffered saline. The mRNA expression of superoxide dismutases was also reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria NR-treated group than that in Ceria NS-treated group. CONCLUSION: Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better antiinflammatory effect than Ceria NSs, but showed similar antioxidant activity.

15.
Nucleic Acids Res ; 49(19): 11379-11391, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34643712

RESUMEN

The importance of histone variant H2A.Z in transcription regulation has been well established, yet its mechanism-of-action remains enigmatic. Conflicting evidence exists in support of both an activating and a repressive role of H2A.Z in transcription. Here we report cryo-electron microscopy (cryo-EM) structures of nucleosomes and chromatin fibers containing H2A.Z and those containing canonical H2A. The structures show that H2A.Z incorporation results in substantial structural changes in both nucleosome and chromatin fiber. While H2A.Z increases the mobility of DNA terminus in nucleosomes, it simultaneously enables nucleosome arrays to form a more regular and condensed chromatin fiber. We also demonstrated that H2A.Z's ability to enhance nucleosomal DNA mobility is largely attributed to its characteristic shorter C-terminus. Our study provides the structural basis for H2A.Z-mediated chromatin regulation, showing that the increase flexibility of the DNA termini in H2A.Z nucleosomes is central to its dual-functions in chromatin regulation and in transcription.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN/química , Histonas/química , Nucleosomas/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071285

RESUMEN

Background: Tonsil-derived mesenchymal stem cells (T-MSCs) were reported to have suppressive effect on T cells, yet much remains unknown about the underlying mechanisms supporting this effect. We investigated the underlying mechanism of the immunomodulatory effect of T-MSCs on immune cell proliferation and cytokine production. Methods: We isolated T-MSCs from human palatine tonsil and evaluated the immunomodulatory capacity using RT-PCR, ELISA, and flow cytometry. Additionally, we assessed the expression of various soluble factors and several costimulatory molecules to detect the priming effect on T-MSCs. Results: T-MSCs significantly inhibited the immune cell proliferation and cytokine expression (TNF-α and IFN-γ) in the direct co-culture, but there was no suppressive effect in indirect co-culture. Additionally, we detected a remarkably higher expression of indoleamine 2,3-dioxygenase (IDO) in the primed T-MSCs having co-expression CD40. Moreover, immune cells or CD4+ T cells showed lower TNF-α, IFN-γ, and IL-4 expression when the primed T-MSC were added; whereas those findings were reversed when the inhibitor for IDO (not IL-4) or CD40 were added. Furthermore, T-bet and GATA3 levels were significantly decreased in the co-cultures of the primed T-MSCs and CD4+ T cells; whereas those findings were reversed when we added the neutralizing anti-CD40 antibody. Conclusions: Primed T-MSCs expressing IDO and CD40 may have immunomodulatory capacity via Th1-mediated and Th2-mediated immune response.


Asunto(s)
Antígenos CD40/metabolismo , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Tonsila Palatina/metabolismo , Linfocitos T CD4-Positivos , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Factor de Transcripción GATA3/metabolismo , Humanos , Inmunidad , Indolamina-Pirrol 2,3,-Dioxigenasa , Linfocitos T/inmunología
17.
Front Aging Neurosci ; 13: 658860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981208

RESUMEN

Background: Postoperative cognitive dysfunction (POCD) following anesthesia and surgery is a common and severe complication, especially in elderly patients. A pre-existing cognitive impairment may impart susceptibility to further cognitive dysfunction; the mechanism remains unclear. We hypothesized that the specific impacts of anesthesia and surgery on individuals with preclinical Alzheimer's disease (AD) may render them more susceptible to an increase in the risk of cognitive impairment. The aim of this study was to compare the cognitive impairment between normal adult mice and those with preclinical AD after propofol anesthesia and surgery. Methods: We performed abdominal surgery in cognitively pre-symptomatic, 5-month-old male mice with sporadic AD (apolipoprotein E4 allele, ApoE4-KI) and age-matched (C57BL/6J) controls. Propofol anesthesia (170 mg/kg) was induced via retro-orbital injection over 2 h. Morris water maze (MWM) and Y-maze tests were conducted 2 days before and 2, 4, and 7 days after surgery. The mean escape latencies and spontaneous alternation percentages were the major outcomes. Neuronal apoptosis in hippocampal sections was evaluated using the terminal dUTP nick-end labeling (TUNEL) assay. Hippocampal amyloid beta (Aß) levels were assessed via quantitative immunohistochemistry (IHC). Results: The control mice exhibited increased mean escape latencies of MWM at postoperative 2 and 4, but not at day 7; ApoE4-KI mice exhibited such increases at postoperative days 2, 4 and 7. Significant differences between ApoE4-KI and control mice in terms of the mean escape latencies were evident at days 2 and 7 (both P < 0.05). However, performance on a non-hippocampal memory tasks (Y-maze test) did not differ. More TUNEL-positive neurons were evident in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 2 and 4, but not at day 7 compared to the control group (both P < 0.05). IHC revealed significantly elevated Aß deposition in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 4 and 7 compared to control mice (both P < 0.05). Conclusions: Propofol anesthesia followed by surgery induced persistent changes in cognition, and pathological hippocampal changes in pre-symptomatic, but vulnerable AD mice. It would be appropriate to explore whether preclinical AD patients are more vulnerable to POCD development.

18.
In Vivo ; 35(2): 845-857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622877

RESUMEN

BACKGROUND/AIM: Mesenchymal stem cells (MSCs) have been suggested as an alternative therapeutic option in atopic dermatitis. Palatine tonsils are lymphoepithelial tissue located around the oropharynx and have been proposed as one of the important alternative sources of MSCs. The purpose of this study was to evaluate the protective and therapeutic effects of tonsil-derived MSCs (TMSCs) in a 2,4-dinitrofluorobenzene (DNFB)-induced mouse model of atopic dermatitis (AD). MATERIALS AND METHODS: The effect of TMSCs was evaluated in 20 C57BL/6J mice that were randomly divided into four groups (normal, DNFB-PBS, DNFB-TMSC7, and DNFB-TMSC16 group). TMSCs were subcutaneously injected into DNFB-sensitized mice on day 7 (DNFB-TMSC7 group) and day 16 (DNFB-TMSC16 group). Several parameters of inflammation were assessed. RESULTS: Subcutaneously injected TMSCs significantly improved the inflammatory symptoms in a DNFB-induced AD model mice, particularly showing therapeutic effects rather than protective effects. TMSC treatment inhibited T-cell-mediated inflammatory responses by decreasing the levels of IL-6, IL-1ß, TNF-α (Th1 cell marker), IL-4 (Th2 cell marker), and B-cell-mediated serum IgE. In contrast, TMSCs enhanced the anti-inflammatory cytokine TGF-ß. CONCLUSION: In vitro and in vivo results suggest that TMSC treatment improved inflammatory skin lesions in the DNFB-induced AD mice model via immunomodulatory effects of the TMSCs. TMSCs inhibit T-cell and B-cell mediated responses, and enhance the anti-inflammatory responses.


Asunto(s)
Dermatitis Atópica , Células Madre Mesenquimatosas , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/terapia , Dinitrofluorobenceno , Ratones , Ratones Endogámicos C57BL , Tonsila Palatina
19.
Cancers (Basel) ; 13(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567693

RESUMEN

While a higher incidence of lung cancer in subjects with previous tuberculous infection has been reported in epidemiologic data, the mechanism by which previous tuberculosis affects lung cancer remains unclear. We investigated the role of NOX4 in tuberculous pleurisy-assisted tumorigenicity both in vitro and in vivo.Heat-killed Mycobacterium tuberculosis-stimulated mesothelial cells augmented the migrationand invasive potential of lung cancer cells in a NOX4-dependent manner. Mice with Mycobacterium bovis bacillus Calmette-Guérin (BCG) pleural infection exhibited increased expression of NOX4 and enhanced malignant potential of lung cancer compared to mice with intrathoracic injection of phosphate-buffered saline. The BCG+ KLN205 (KLN205 cancer cell injection after BCG treatment) NOX4 KO mice group showed reduced tuberculous fibrosis-promoted metastatic potential of lung cancer, increased autophagy, and decreased expression of TGF-ß, IL-6, and TNF-α compared to the BCG+KLN205 WT mice group. Finally, NOX4 silencing mitigated the malignant potential of A549 cells that was enhanced by tuberculous pleural effusion and restored autophagy signaling. Our results suggest that the NOX4-autophagy axis regulated by tuberculous fibrosis could result in enhanced tumorigenic potential and that NOX4-P62 might serve as a target for tuberculous fibrosis-induced lung cancer.

20.
Sci Rep ; 10(1): 20799, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247188

RESUMEN

Electronic cigarettes (e-cigarettes) are the most widely used electronic nicotine delivery systems and are designed to imitate smoking and aid in smoking cessation. Although the number of e-cigarette users is increasing rapidly, especially among young adults and adolescents, the potential health impacts and biologic effects of e-cigarettes still need to be elucidated. Our previous study demonstrated the cytotoxic effects of electronic liquids (e-liquids) in a human middle ear epithelial cell (HMEEC-1) line, which were affected by the manufacturer and flavoring agents regardless of the presence of nicotine. In this study, we aimed to evaluate the gene expression profile and identify potential molecular modulator genes and pathways in HMEEC-1 exposed to two different e-liquids (tobacco- and menthol-flavored). HMEEC-1 was exposed to e-liquids, and RNA sequencing, functional analysis, and pathway analysis were conducted to identify the resultant transcriptomic changes. A total of 843 genes were differentially expressed following exposure to the tobacco-flavored e-liquid, among which 262 genes were upregulated and 581 were downregulated. Upon exposure to the menthol-flavored e-liquid, a total of 589 genes were differentially expressed, among which 228 genes were upregulated and 361 were downregulated. Among the signaling pathways associated with the differentially expressed genes mediated by tobacco-flavored e-liquid exposure, several key molecular genes were identified, including IL6 (interleukin 6), PTGS2 (prostaglandin-endoperoxide synthase 2), CXCL8 (C-X-C motif chemokine ligand 8), JUN (Jun proto-oncogene), FOS (Fos proto-oncogene), and TP53 (tumor protein 53). Under menthol-flavored e-liquid treatment, MMP9 (matrix metallopeptidase 9), PTGS2 (prostaglandin-endoperoxide synthase 2), MYC (MYC proto-oncogene, bHLH transcription factor), HMOX1 (heme oxygenase 1), NOS3 (nitric oxide synthase 3), and CAV1 (caveolin 1) were predicted as key genes. In addition, we identified related cellular processes, including inflammatory responses, oxidative stress and carcinogenesis, under exposure to tobacco- and menthol-flavored e-liquids. We identified differentially expressed genes and related cellular processes and gene signaling pathways after e-cigarette exposure in human middle ear cells. These findings may provide useful evidence for understanding the effect of e-cigarette exposure.


Asunto(s)
Oído Medio/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Oído Medio/citología , Oído Medio/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Marcadores Genéticos , Humanos , Mentol/toxicidad , Proto-Oncogenes Mas , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Nicotiana/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...