Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 31(6): 803-814, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33879637

RESUMEN

A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Metano/metabolismo , Microbiota , Odorantes , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metano/aislamiento & purificación , Eliminación de Residuos/métodos , República de Corea , Estaciones del Año , Sulfuros/aislamiento & purificación , Sulfuros/metabolismo , Temperatura , Instalaciones de Eliminación de Residuos
2.
Waste Manag ; 100: 45-56, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31520912

RESUMEN

In this study, a biowindow with a piped gas collection network is proposed as an area-efficient landfill gas treatment system. A 9-m2 biowindow was constructed for treating landfill gas collected from an area of 450 m2 in a sanitary landfill, and its performance was evaluated for 224 days. The methane removal efficiency was 59-100% at 146.3-675.1 g-CH4 m-2 d-1. Odorous compounds were also removed by the biowindow, with a complex odor intensity removal rate of 93-100%. In particular, the removal efficiency for hydrogen sulfide and methanethiol, major contributors to the complex odor intensity, was 97% and 91%, respectively. Metagenomic analysis showed that the dominant bacterial genera shifted from Acinetobacter and Pseudomonas to Methylobacter and Methylocaldum due to the high concentration of methane. A high bacterial diversity was maintained, which may have contributed to the robust performance of the biowindow against environmental fluctuations. At 1/50th of the size of conventional biocovers, the proposed biowindow can greatly reduce the required installation area and represents a competitive method for the simultaneous treatment of methane and odor in landfills.


Asunto(s)
Metano , Eliminación de Residuos , Odorantes , Oxidación-Reducción , Instalaciones de Eliminación de Residuos
3.
Waste Manag Res ; 36(12): 1137-1145, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30376763

RESUMEN

The performance of a biocomplex textile prototype was evaluated as an alternative daily cover at an operational landfill site to mitigate odors and methane. The biocomplex textile prototype consisted of two layers of nonwoven fabric and biocarrier immobilized microorganisms and showed excellent removal of odors and methane compared to landfill cover soil. The complex odor intensity (odor dilution ratio (ODR)) on the surface of landfill cover soil was 1,000-10,000 ODR (average of 4,204 ODR), whereas it was 5-250 ODR (average of 55 ODR) on the surface of biocomplex textile. Hydrogen sulfide, which contributes a significant odor intensity, had an average concentration on the biocomplex textile of 8.64 parts-per-billion (ppb), compared to 1733.21 ppb on the landfill cover soil. The biocomplex textile also showed effective methane removal with methane concentrations of 0-1.2% (average of 0.3%) on the biocomplex textile compared to 0-20% (average of 5.3%) on the landfill cover soil. Bacterial community diversity in the biocomplex textile increased with time until an operating period of 66 days, after which diversity indices were maintained at a constant level. The dominant species were the methanotrophs Methylocaldum and Methylobacter, and the non-methanotrophs Acinetobacter, Serpens, Ohtaekwangia, and Actinophytocola. These results demonstrate that on-site biocomplex textile is a suitable alternative daily cover to mitigate odors and methane in landfills.


Asunto(s)
Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Metano , Oxidación-Reducción , República de Corea , Suelo , Textiles
4.
Environ Res ; 166: 516-528, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29957505

RESUMEN

Unpleasant odors emitted from landfills have been caused environmental and societal problems. For odor abatement, two pilot-scale biocovers were installed at a sanitary landfill site in South Korea. Biocovers PBC1 and PBC2 comprised a soil mixture with different ratios of earthworm casts as an inoculum source and were operated for 240 days. Their odor removal efficiencies were evaluated, and their bacterial community structures were characterized using pyrosequencing. In addition, the correlation between odor removability and bacterial community dynamics was assessed using network analysis. The removal efficiency of complex odor intensity in the two biocovers ranged from 81.1% to 97.8%. Removal efficiencies of sulfur-containing odors (hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide), which contributed most to complex odor intensity, were greater than 91% in both biocovers. Despite the fluctuations in ambient temperature (-8.2 to 31.3 °C) and inlet complex odor intensity (10,000-42,748 of odor dilution ratio), biocovers PBC1 and PBC2 displayed stable deodorizing performance. A high ratio of earthworm casts as an inoculum source led to high odor removability during the first 25 days of operation, but different mixing ratios of earthworm casts did not significantly affect overall odor removability. A bacterial community analysis showed that Methylobacter, Arthrobacter, Acinetobacter, Rhodanobacter, and Pedobacter were the dominant genera in both biocovers. Network analysis results indicated that Steroidobacter, Cystobacter, Methylosarcina, Solirubrobacter, and Pseudoxanthomonas increased in relative abundance with time and were major contributors to odor removal, although these bacteria had a relatively low abundance compared to the overall bacterial community. These data contribute to a more comprehensive understanding of the relationship between bacterial community dynamics and deodorizing performance in biocovers.


Asunto(s)
Contaminantes Atmosféricos/análisis , Bacterias/clasificación , Odorantes/análisis , Eliminación de Residuos , Microbiología del Suelo , Animales , Metano , Oligoquetos , Oxidación-Reducción , República de Corea , Instalaciones de Eliminación de Residuos
5.
Waste Manag ; 71: 277-286, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29089227

RESUMEN

Landfills are key anthropogenic emission sources for odors and methane. For simultaneous mitigation of odors and methane emitted from landfills, a pilot-scale biocover (soil:perlite:earthworm cast:compost, 6:2:1:1, v/v) was constructed at a sanitary landfill in South Korea, and the biocover performance and its bacterial community dynamics were monitored for 240 days. The removal efficiencies of odor and methane were evaluated to compare the odor dilution ratios or methane concentrations at the biocover surface and landfill soil cover surface where the biocover was not installed. The odor removal efficiency was maintained above 85% in all seasons. The odor dilution ratios ranged from 300 to 3000 at the biocover surface, but they were 6694-20,801 at the landfill soil cover surface. Additionally, the methane removal efficiency was influenced by the ambient temperature; the methane removal efficiency in winter was 35-43%, while the methane removability was enhanced to 85%, 86%, and 96% in spring, early summer, and late summer, respectively. The ratio of methanotrophs to total bacterial community increased with increasing ambient temperature from 5.4% (in winter) to 12.8-14.8% (in summer). In winter, non-methanotrophs, such as Acinetobacter (8.8%), Rhodanobacter (7.5%), Pedobacter (7.5%), and Arthrobacter (5.7%), were abundant. However, in late summer, Methylobacter (8.8%), Methylocaldum (3.4%), Mycobacterium (1.1%), and Desulviicoccus (0.9%) were the dominant bacteria. Methylobacter was the dominant methanotroph in all seasons. These seasonal characteristics of the on-site biocover performance and its bacterial community are useful for designing a full-scale biocover for the simultaneous mitigation of odors and methane at landfills.


Asunto(s)
Metano/análisis , Odorantes/análisis , Eliminación de Residuos , Instalaciones de Eliminación de Residuos , Animales , Bacterias/metabolismo , Oxidación-Reducción , República de Corea , Estaciones del Año , Suelo , Microbiología del Suelo
6.
Artículo en Inglés | MEDLINE | ID: mdl-28763254

RESUMEN

A new decolorizing white-rot fungus, OBR105, was isolated from Mount Odae in South Korea and identified by the morphological characterization of its fruit body and spores and partial 18s rDNA sequences. The ligninolytic enzyme activity of OBR105 was studied to characterize their decolorizing mechanism using a spectrophotometric enzyme assay. For the evaluation of the decolorization capacity of OBR105, the isolate was incubated in an erlenmeyer flask and in an airlifte bioreator with potato dextrose broth (PDB) medium supplemented with each dye. In addition, the decolorization efficiency of real textile wastewater was evaluated in an airlift bioreactor inoculated with the isolate. The isolate was identified as Bjerkandera adusta and had ligninolytic enzymes such as laccase, lignin peroxidase (LiP), and Mn-dependent peroxidase (MnP). Its LiP activity was higher than its MnP and laccase activities. B. adusta OBR105 successfully decolorized reactive dyes (red 120, blue 4, orange 16, and black 5) and acid dyes (red 114, blue 62, orange 7, and black 172). B. adusta OBR105 decolorized 91-99% of 200 mg L-1 of each dye (except acid orange 7) within 3 days in a PDB medium at 28°C, pH 5, and 150 rpm. This fungus decolorized only 45% of 200 mg L-1 acid orange 7 (single azo-type dye) within 3 days, and the decolorization efficiency did not increase by prolonging the cultivation time. In the air-lift bioreactor, B. adusta OBR105 displayed a high decolorization capacity, greater than 90%, for 3 acid dyes (red 114, blue 62, and black 172) and 1 reactive dye (blue 4) within 10-15 h of treatment. B. adusta OBR105 could decolorize real textile wastewater in the air-lift bioreactor. This result suggests that an air-lift reactor employing B. adusta OBR105 is a promising bioreactor for the treatment of dye wastewater.


Asunto(s)
Reactores Biológicos/microbiología , Colorantes/análisis , Coriolaceae/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Colorantes/química , Coriolaceae/enzimología , Lacasa/metabolismo , Peroxidasas/metabolismo , República de Corea , Textiles , Contaminantes Químicos del Agua/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-28463583

RESUMEN

The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L-1). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L-1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L-1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L-1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L-1). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.


Asunto(s)
Compuestos Azo/análisis , Bencenosulfonatos/análisis , Complejos de Coordinación/análisis , Naftalenosulfonatos/análisis , Trametes/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental , Lacasa/metabolismo , Peroxidasas/metabolismo , Industria Textil , Trametes/enzimología , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...