Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Optom Vis Sci ; 101(6): 408-416, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38990239

RESUMEN

SIGNIFICANCE: Performance-based outcome measures are crucial for clinical trials of field expansion devices. We implemented a test simulating a real-world mobility situation, focusing on detection of a colliding pedestrian among multiple noncolliding pedestrians, suitable for measuring the effects of homonymous hemianopia and assistive devices in clinical trials. PURPOSE: In preparation for deploying the test in a multisite clinical trial, we conducted a pilot study to gather preliminary data on blind-side collision detection performance with multiperiscopic peripheral prisms compared with Fresnel peripheral prisms. We tested the hypothesis that detection rates for colliding pedestrians approaching on a 40° bearing angle (close to the highest collision risk when walking) would be higher with 100Δ oblique multiperiscopic (≈42° expansion) than 65Δ oblique Fresnel peripheral prisms (≈32° expansion). METHODS: Six participants with homonymous hemianopia completed the test with and without each type of prism glasses, after using them in daily mobility for a minimum of 4 weeks. The test, presented as a video on a large screen, simulated walking through a busy shopping mall. Colliding pedestrians approached from the left or the right on a bearing angle of 20 or 40°. RESULTS: Overall, blind-side detection was only 23% without prisms but improved to 73% with prisms. For multiperiscopic prisms, blind-side detection was significantly higher with than without prisms at 40° (88 vs. 0%) and 20° (75 vs. 0%). For Fresnel peripheral prisms, blind-side detection rates were not significantly higher with than without prisms at 40° (38 vs. 0%) but were significantly higher with prisms at 20° (94 vs. 56%). At 40°, detection rates were significantly higher with multiperiscopic than Fresnel prisms (88 vs. 38%). CONCLUSIONS: The collision detection test is suitable for evaluating the effects of hemianopia and prism glasses on collision detection, confirming its readiness to serve as the primary outcome measure in the upcoming clinical trial.


Asunto(s)
Hemianopsia , Peatones , Humanos , Proyectos Piloto , Hemianopsia/diagnóstico , Hemianopsia/fisiopatología , Hemianopsia/etiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Accidentes de Tránsito , Anteojos , Campos Visuales/fisiología , Anciano , Caminata/fisiología
2.
J Vis ; 24(6): 13, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899959

RESUMEN

Binocular double vision in strabismus is marked by diplopia (seeing the same object in two different directions) and visual confusion (seeing two different objects in the same direction). In strabismus with full visual field, the diplopia coexists with visual confusion across most of the binocular field. With visual field loss, or with use of partial prism segments for field expansion, the two phenomena may be separable. This separability is the focus of this review and offers new insights into binocular function. We show that confusion is necessary but is not sufficient for field expansion. Diplopia plays no role in field expansion but is necessary for clinical testing of strabismus, making such testing difficult in field loss conditions with confusion without diplopia. The roles of the three-dimensional structure of the real world and the dynamic of eye movements within that structure are considered as well. Suppression of one eye's partial view under binocular vision that develops in early-onset (childhood) strabismus is assumed to be a sensory adaption to diplopia. This assumption can be tested using the separation of diplopia and confusion.


Asunto(s)
Diplopía , Estrabismo , Visión Binocular , Campos Visuales , Humanos , Visión Binocular/fisiología , Campos Visuales/fisiología , Diplopía/fisiopatología , Estrabismo/fisiopatología , Movimientos Oculares/fisiología
3.
Biomed Opt Express ; 15(3): 1393-1407, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495729

RESUMEN

Prism field expansion is a common treatment for patients with peripheral field loss, shifting images from the blind field into the seeing field. The shifted image originates from a new viewpoint translated and rotated from the original viewpoint by the prism. To understand such viewpoint changes, we simulated two field expansion methods in virtual reality: 1) angular (i.e., rotational) field expansion and 2) linear field expansion via image crop-and-shift. Changes to object locations, sizes, and optic flow patterns by those methods were demonstrated and analyzed in both static and dynamic conditions, which may affect navigation with such field expansion devices.

4.
IS&T Int Symp Electron Imaging ; 36: 2141-2148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390289

RESUMEN

Avoiding person-to-person collisions is critical for visual field loss patients. Any intervention claiming to improve the safety of such patients should empirically demonstrate its efficacy. To design a VR mobility testing platform presenting multiple pedestrians, a distinction between colliding and non-colliding pedestrians must be clearly defined. We measured nine normally sighted subjects' collision envelopes (CE; an egocentric boundary distinguishing collision and non-collision) and found it changes based on the approaching pedestrian's bearing angle and speed. For person-to-person collision events for the VR mobility testing platform, non-colliding pedestrians should not evade the CE.

5.
Opt Express ; 32(2): 2631-2643, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297787

RESUMEN

Among various specifications of near eye display (NED) devices, a compact formfactor is essential for comfortable user experience but also the hardest one to accomplish due to the slowest progresses. A pinhole/pinlight array based light-field (LF) technique is considered as one of the candidates to achieve that goal without thicker and heavier refractive optics. Despite those promising advantages, however, there are critical issues, such as dark spots and contrast distortion, which degrade the image quality because of the vulnerability of the LF retinal image when the observer's eye pupil size changes. Regardless of previous attempts to overcome those artifacts, it was impossible to resolve both issues due to their trade-off relation. In this paper, in order to resolve them simultaneously, we propose a concept of multiplexed retinal projections to integrate the LF retinal image through rotating transitions of refined and modulated elemental images for robust compensation of eye pupil variance with improved conservation of contrast distribution. Experimental demonstrations and quantitative analysis are also provided to verify the principle.


Asunto(s)
Pupila , Retina , Refracción Ocular , Óptica y Fotónica , Estimulación Luminosa
6.
Sci Rep ; 13(1): 20199, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980436

RESUMEN

Recent head-mounted displays and smart glasses use vision multiplexing, an optical approach where two or more views are superimposed on each other. In vision multiplexing, augmented information is presented over an observer's natural field of view, providing field expansion and critical information during mobility situations like walking and driving. Yet despite its utility, vision multiplexing may produce visual rivalry, a phenomenon where perception alternates between the augmented information and the background scene for seconds at a time. To investigate, we compared the effect of different peripheral vision multiplexing configurations (unilateral opaque, unilateral see-through and bilateral see-through) on the detection of augmented information, incorporating at the same time real-world characteristics (target eccentricity, depth condition, and gaze movement) for a more realistic assessment. Results showed a persistently lower target detection rate in unilateral configurations than the bilateral configuration, suggesting a larger effect of binocular rivalry on target visibility. Nevertheless, this effect does become attenuated when more naturalistic elements are incorporated, and we discuss recommendations for vision multiplexing design and possible avenues for further research.


Asunto(s)
Gafas Inteligentes , Visión Binocular , Percepción Visual , Movimiento
7.
Front Microbiol ; 14: 1211761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560518

RESUMEN

Introduction: Biofilm occurs ubiquitously in water system. Excessive biofilm formation deteriorates severely system performance in several water and wastewater treatment processes. Quorum sensing systems were controlled in this study with a signal compound cis-2-Decenoic acid (CDA) to regulate various functions of microbial communities, including motility, enzyme production, and extracellular polymeric substance (EPS) production in biofilm. Methods: The addition of CDA to six strains extracted from membrane bioreactor sludge and the Pseudomonas aeruginosa PAO1 strain was examined for modulating biofilm development by regulating DSF expression. Results and discussion: As the CDA doses increased, optical density of the biofilm dispersion assay increased, and the decrease in EPS of the biofilm was obvious on membrane surfaces. The three-dimensional visual images and quantitative analyses of biofilm formation with CDA proved thinner, less massive, and more dispersive than those without; to evaluate its dispersive intensity, a dispersion index was proposed. This could compare the dispersive effects of CDA dosing to other biofilms or efficiencies of biofouling control practices such as backwashing or new cleaning methods.

8.
Optom Vis Sci ; 100(8): 515-529, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499041

RESUMEN

SIGNIFICANCE: Veridical depictions of scene appearance with scotomas allow better understanding of the impact of field loss and may improve the development and implementation of rehabilitation. Explanation and depiction of the invisibility of scotoma may lead to patients' understanding and thus better compliance with related treatments. PURPOSE: Simulations of perception with scotomas guide training, patient education, and rehabilitation research. Most simulations incorrectly depict scotomas as black patches, although the scotomas and the missing contents are usually invisible to patients. We present a novel approach to capture the reported appearance of scenes with scotomas. METHODS: We applied a content-aware image resizing algorithm to carve out the content elided under the scotomas. With video sequences, we show how and why eye movements fail to increase the visibility of the carved scotomas. RESULTS: Numerous effects, reported by patients, emerge naturally from the scotoma carving. Carving-eliminated scotomas over natural images are barely visible, despite causing substantial distortions. Low resolution and contrast sensitivity at farther eccentricities and saccadic blur reduce the visibility of the distortions. In a walking scenario, static objects moving smoothly to the periphery disappear into and then reemerge out of peripheral scotomas, invisibly. CONCLUSIONS: Scotoma carving provides a viable hypothetical simulation of vision with scotomas due to loss of neurons at the retinal ganglion cell level and higher. As a hypothesis, it generates predictions that lend themselves to future clinical testing. The different effects of scotomas due to loss of photoreceptors are left for follow-up work.


Asunto(s)
Escotoma , Campos Visuales , Humanos , Escotoma/diagnóstico , Escotoma/etiología , Movimientos Oculares , Movimientos Sacádicos , Sensibilidad de Contraste
9.
Biomed Opt Express ; 14(5): 2352-2364, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206143

RESUMEN

Oblique Fresnel peripheral prisms have been used for field expansion in homonymous hemianopia mobility such as walking and driving. However, limited field expansion, low image quality, and small eye scanning range limit their effectiveness. We developed a new oblique multi-periscopic prism using a cascade of rotated half-penta prisms, which provides 42° horizontal field expansion along with 18° vertical shift, high image quality, and wider eye scanning range. Feasibility and performance of a prototype using 3D-printed module are demonstrated by raytracing, photographic depiction, and Goldmann perimetry with patients with homonymous hemianopia.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36970500

RESUMEN

Visual confusion occurs when two dissimilar images are superimposed onto the same retinal location. In the context of wearable displays, it can be used to provide multiple sources of information to users on top of the real-world scene. While useful, visual confusion may cause visual rivalry that can suppress one of the sources. If two different images are projected to each eye (i.e., monocular displays), it provokes binocular rivalry wherein visual perception intermittently switches between the two images. When a semi-transparent image is superimposed (i.e., see-through displays), monocular rivalry results, causing perceptual alternations between the foreground and the background images. Here, we investigated how these rivalries influence the visibility of the peripheral target using three configurations of wearable displays (i.e., monocular opaque, monocular see-through, and binocular see-through) with three eye movement conditions (i.e., saccades, smooth pursuit, and central fixation). Using the HTC VIVE Eye Pro headset, subjects viewed a forward vection of a 3D corridor with a horizontally moving vertical grating at 10° above the center fixation. During each trial (~1 min), subjects followed a fixation cross that varied in location to induce eye movements and simultaneously reported whether the peripheral target was visible. Results showed that the binocular display had significantly higher target visibility than both monocular displays, and the monocular see-through display had the lowest target visibility. Target visibility was also higher when eye movements were executed, suggesting that the effects of rivalry are attenuated by eye movements and binocular see-through displays.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36970501

RESUMEN

Detecting and avoiding collisions during walking is critical for safe mobility. To determine the effectiveness of clinical interventions, a realistic objective outcome measure is needed. A real-world obstacle course with moving hazards has numerous limitations (e.g., safety concerns of physical collision, inability to control events, maintaining event consistency, and event randomization). Virtual reality (VR) platforms may overcome such limitations. We developed a VR walking collision detection test using a standalone head-mounted display (HMD, Meta Quest 2) with the Unity 3D engine to enable subjects' physical walking within a VR environment (i.e., a busy shopping mall). The performance measures focus on the detection and avoidance of potential collisions, where a pedestrian may (or may not) walks toward a collision with the subject, while various non-colliding pedestrians are presented simultaneously. The physical space required for the system was minimized. During the development, we addressed expected and unexpected hurdles, such as mismatch of visual perception of VR space, limited field of view (FOV) afforded by the HMD, design of pedestrian paths, design of the subject task, handling of subject's response (detection or avoidance behavior), use of mixed reality (MR) for walking path calibration. We report the initial implementation of the HMD VR walking collision detection and avoidance scenarios that showed promising potential as clinical outcome measures.

12.
Nanotechnology ; 34(24)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36753754

RESUMEN

The mechanical properties of polymer nanocomposites can be improved by incorporating various types of nanofillers. The hybridization of nanofillers through covalent linkages between nanofillers with different dimensions and morphology can further increase the properties of nanocomposites. In this work, aramid nanofibers (ANFs) are modified using chlorinated cellulose nanocrystals (CNCs) and functionalized with 3-glycidoxypropyltrimethoxysilane to improve the chemical and mechanical interaction in an epoxy matrix. The integration of CNC functionalized ANFs (fACs) in the epoxy matrix simultaneously improves Young's modulus, tensile strength, fracture properties, and viscoelastic properties. The test results show that 1.5 wt% fAC reinforced epoxy nanocomposites improve Young's modulus and tensile strength by 15.1% and 10.1%, respectively, and also exhibit 2.5 times higher fracture toughness compared to the reference epoxy resin. Moreover, the glass transition temperature and storage modulus are found to increase when fACs are incorporated. Thus, this study demonstrates that the enhanced chemical and mechanical interaction by the CNC functionalization on the ANFs can further improve the static and dynamic mechanical properties of polymer nanocomposites.

13.
Disabil Rehabil Assist Technol ; 17(8): 888-896, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-32997554

RESUMEN

PURPOSE: Visual sensory substitution devices (SSDs) convey visual information to a blind person through another sensory modality. Using a visual SSD in various daily activities requires training prior to use the device independently. Yet, there is limited literature about procedures and outcomes of the training conducted for preparing users for practical use of SSDs in daily activities. METHODS: We trained 29 blind adults (9 with congenital and 20 with acquired blindness) in the use of a commercially available electro-tactile SSD, BrainPort. We describe a structured training protocol adapted from the previous studies, responses of participants, and we present retrospective qualitative data on the progress of participants during the training. RESULTS: The length of the training was not a critical factor in reaching an advanced stage. Though performance in the first two sessions seems to be a good indicator of participants' ability to progress in the training protocol, there are large individual differences in how far and how fast each participant can progress in the training protocol. There are differences between congenital blind users and those blinded later in life. CONCLUSIONS: The information on the training progression would be of interest to researchers preparing studies, and to eye care professionals, who may advise patients to use SSDs.IMPLICATIONS FOR REHABILITATIONThere are large individual differences in how far and how fast each participant can learn to use a visual-to-tactile sensory substitution device for a variety of tasks.Recognition is mainly achieved through top-down processing with prior knowledge about the possible responses. Therefore, the generalizability is still questionable.Users develop different strategies in order to succeed in training tasks.


Asunto(s)
Personas con Daño Visual , Adulto , Ceguera , Humanos , Estudios Retrospectivos , Lengua , Tacto
14.
Optom Vis Sci ; 98(10): 1210-1226, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34629434

RESUMEN

SIGNIFICANCE: Photographic depiction helps to illustrate the primary and secondary field of view effects of low vision devices along with their utility to clinicians, patients, and caretakers. This technique may also be helpful for designers and researchers in improving the design and fitting of low vision devices. PURPOSE: The field of view through spectacles-mounted low vision devices has typically been evaluated using perimetry. However, the perimetric field diagram is different from the retinal image and often fails to represent the important aspects of the field of view and visual parameters. We developed a photographic depiction method to record and veridically show the field of view effects of these devices. METHODS: We used a 3D-printed holder to place spectacles-mounted devices at the same distance from the empirically determined reference point of the field of view in a camera lens (f = 16 mm) as they would be from an eye, when in use. The field of view effects of a bioptic telescope, a minifier (reverse telescope), and peripheral prisms were captured using a conventional camera, representing retinal images. The human eye pupil size (adjusting the F number: f/2.8 to f/8 and f/22 in the camera lens) and fitting parameters (pantoscopic tilt and back vertex distance) varied. RESULTS: Real-world indoor and outdoor walking and driving scenarios were depicted as retinal images illustrating the field of view through low vision devices, distinguishing optical and obscuration scotomas, and demonstrating secondary effects (spatial distortions, viewpoint changes, diplopia, spurious reflection, and multiplexing effects) not illustrated by perimetric field diagrams. CONCLUSIONS: Photographic depiction illustrates the primary and secondary field of view effects of the low vision devices. These images highlight the benefit and possible trade-offs of the low vision devices and may be beneficial in education and training.


Asunto(s)
Anteojos , Baja Visión , Humanos , Trastornos de la Visión , Visión Ocular , Pruebas del Campo Visual
15.
J Neural Eng ; 18(4)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34359062

RESUMEN

Objective. The perception of individuals fitted with retinal prostheses is not fully understood, although several retinal implants have been tested and commercialized. Realistic simulations of perception with retinal implants would be useful for future development and evaluation of such systems.Approach.We implemented a retinal prosthetic vision simulation, including temporal features, which have not been previously simulated. In particular, the simulation included temporal aspects such as persistence and perceptual fading of phosphenes and the electrode activation rate.Main results.The simulated phosphene persistence showed an effective reduction in flickering at low electrode activation rates. Although persistence has a positive effect on static scenes, it smears dynamic scenes. Perceptual fading following continuous stimulation affects prosthetic vision of both static and dynamic scenes by making them disappear completely or partially. However, we showed that perceptual fading of a static stimulus might be countered by head-scanning motions, which together with the persistence revealed the contours of the faded object. We also showed that changing the image polarity may improve simulated prosthetic vision in the presence of persistence and perceptual fading.Significance.Temporal aspects have important roles in prosthetic vision, as illustrated by the simulations. Considering these aspects may improve the future design, the training with, and evaluation of retinal prostheses.


Asunto(s)
Fosfenos , Prótesis Visuales , Simulación por Computador , Humanos , Retina , Trastornos de la Visión
16.
J Hazard Mater ; 417: 126088, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229409

RESUMEN

A membrane bioreactor with humic acid substrate (MBR-H) was operated to investigate organic removal and membrane performance. Approximately, 60% of chemical oxygen demand removal was observed in MBR-H. The biosorption capacity reached to the maximum value of 29.2 mg g-1 in the experiments with various activated sludge concentrations and the amount adsorbed on the newly produced microbes was limited. To understand key functions of microorganisms in the biodegradation of humic acid, the microbial community was examined. The dominant phylum was changed from Actinobacteria at the raw sludge to Proteobacteria at the MBR-H. Especially, great increases of ß-, γ-, and δ-Proteobacteria in the MBR-H indicated that those class of Proteobacteria played a vital role in humic acid removal. Investigation at the genus level showed enrichment of Stenotrophobacter in the MBR-H, which indicated the presence of metabolites in the proposed humic substance degradation pathway. In addition, the bacteria producing extracellular polymeric substances were increased in the MBR-H. Substantial variation of microbial community function was occurred in the MBR to degrade humic acid. Operational parameters in MBRs might be sought to maintain water permeability and to obtain preferable condition to evolution of microbial consortia for degradation of the refractory organic matter.


Asunto(s)
Sustancias Húmicas , Microbiota , Reactores Biológicos , Membranas Artificiales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
17.
Artículo en Inglés | MEDLINE | ID: mdl-34068484

RESUMEN

Postural control during walking is maintained by the combination of various factors. Among these factors, adjustment of trunk movement is essential for maintaining postural control, and the response of muscles to unpredictable stimuli affects postural control. Loss of balance while walking increases the risk of accidents, the frequency of which depends on age and sex. In this study, we investigated whether there was a difference in the movement time of trunk muscles to sudden stimulation while walking according to age and sex. Fourteen healthy individuals aged 20-30 years (6 men, 8 women) and 12 individuals aged 50-70 years (4 men, 8 women) were included in the study. Movement time of bilateral erector spinae and rectus abdominis muscles in response to visual stimulation during walking was examined using surface electromyography. Movement time was calculated as the total muscle activation time excluding the reaction time. This study revealed no significant differences in movement time of the erector spinae muscles according to sex or age. The role of the rectus abdominis muscles in maintaining posture during walking was insignificant. In conclusion, the movement time of trunk muscles in response to sudden visual stimulation during walking did not differ by age or sex, and the difference in accident frequency may be associated with deterioration of other factors required to maintain posture.


Asunto(s)
Equilibrio Postural , Caminata , Electromiografía , Femenino , Humanos , Masculino , Movimiento , Contracción Muscular , Músculo Esquelético , Proyectos Piloto
18.
Biomed Opt Express ; 11(9): 4872-4889, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33014587

RESUMEN

Patients with visual field loss frequently collide with other pedestrians, with the highest risk being from pedestrians at a bearing angle of 45°. Current prismatic field expansion devices (≈30°) cannot cover pedestrians posing the highest risk and are limited by poor image quality and restricted eye scanning range (<5°). A new field expansion device: multi-periscopic prism (MPP); comprising a cascade of half-penta prisms provides wider shifting power (45°) with dramatically better image quality and wider eye scanning range (15°) is presented. Spectacles-mounted MPPs were implemented using 3D printing. The efficacy of the MPP is demonstrated using perimetry, photographic depiction, and analyses of the collision risk covered by the devices.

19.
Transl Vis Sci Technol ; 9(8): 35, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32855881

RESUMEN

Purpose: Patients with acquired monocular vision (AMV) lose vision in the temporal crescent on the side of the blind eye. This visual field loss affects patients' ability to detect potential hazards in the blind field. Mounting a base-in multiplexing prism (MxP) on the nasal side of the seeing eye can provide true field expansion and enable detection of potential collision hazards. We evaluated the efficacy of the MxP glasses in a virtual reality walking environment. Methods: A three-dimensional printed clip-on MxP holder that can be adjusted for an individual user's facial parameters was developed. Virtual reality walking scenarios were designed to evaluate the effect of MxP field expansion on the detection of a pedestrian approaching from different initial bearing angles and courses. The pedestrian detection rates and response times of 10 participants with simulated AMV (normally sighted participants with one eye patched) and three patients with AMV were measured. Results: The MxP provided true field expansion of about 25°. Participants performed significantly better with the MxP than without the MxP in the pedestrian detection task on their blind field, while their seeing field performance was not significantly different. Conclusions: The MxP glasses for patients with AMV improved the detection of potential collision hazards in the blind field. Translational Relevance: The MxP with an adjustable clip-on holder may help patients with AMV to decrease the risk of collision with other pedestrians.


Asunto(s)
Peatones , Visión Monocular , Hemianopsia , Humanos , Visión Binocular , Campos Visuales
20.
Opt Commun ; 4542020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32082001

RESUMEN

Patients with visual field loss have difficulty in mobility due to collision with pedestrians/obstacles from the blind side. In order to retrieve the lost visual field, prisms which deflect the field from the blind to the seeing side, have been widely used. However, the deflection power of current clinical Fresnel prisms is limited to ~30° and only provides a 5° eye scanning range to the blind side. This is not sufficient to avoid collision and results in increasing demands for a device with a higher power. In this paper, we propose a novel design and optimization of a higher power prism-like device (cascaded structure of mirror pairs filled with high refractive index) and verify enhanced expansion of up to 45° in optical ray tracing and photorealistic simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA